BestCoder Round #70 Jam's math problem(hdu 5615)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BestCoder Round #70 Jam's math problem(hdu 5615)相关的知识,希望对你有一定的参考价值。

Problem Description

Jam has a math problem. He just learned factorization. He is trying to factorize ax^2+bx+cax?2??+bx+c into the form of pqx^2+(qk+mp)x+km=(px+k)(qx+m)pqx?2??+(qk+mp)x+km=(px+k)(qx+m). He could only solve the problem in which p,q,m,k are positive numbers. Please help him determine whether the expression could be factorized with p,q,m,k being postive.

Input

The first line is a number TT, means there are T(1 \leq T \leq 100 )T(1T100) cases

Each case has one line,the line has 33 numbers a,b,c (1 \leq a,b,c \leq 100000000)a,b,c(1a,b,c100000000)

Output

You should output the "YES" or "NO".

Sample Input
2
1 6 5
1 6 4
Sample Output
YES
NO
Hint
The first case turn x^2+6*x+5x?2??+6x+5 into (x+1)(x+5)(x+1)(x+5)
 
题意:给你一个一元二次方程的三个系数a ,b,c问你是否能用十字相乘的方法分解这个式子
题解:直接暴力枚举,当然要优化下枚举的方法,不然会超时滴,优化:因为最大数据是一亿,一亿可以分解为一万乘一万,因为这样我们分解的两个数一定不可能超过一万,先将c的所有因子存在数组中,然后在计算出a的所有因子,一个一个试即可
#include<stdio.h>
#include<string.h>
#include<string>
#include<math.h>
#include<algorithm>
#define LL long long
#define PI atan(1.0)*4
#define DD doublea
#define MAX 10100
#define mod 10007
using namespace std;
int ans[MAX];
int main()
{
    int n,m,j,i,t,k;
    int a,b,c,Min1,Min2; 
	scanf("%d",&t);
	while(t--)
	{
	    scanf("%d%d%d",&a,&b,&c);
	    Min1=min(a,10000);
	    Min2=min(c,10000);
	    k=1;n=m=1;
	    for(i=1;i<=Min2;i++)
	    {
	    	n=c/i;
	    	if(n*i==c)
	    		ans[k++]=i;
	    }
	    int flag=0;
	    for(i=1;i<=Min1;i++)
	    {
	    	m=a/i;
	    	if(i*m==a)
	    	{
	    		for(j=1;j<k;j++)
	    		{
	    			if((i*ans[j]+m*(c/ans[j])==b)||(m*ans[j]+i*(c/ans[j])==b))
	    			{
	    				flag=1;
	    				break;
	    			}
	    		}
	    	}
	    	if(flag)
	    	    break;
	    }
	    if(flag) printf("YES\n");
	    else printf("NO\n");
	}
	return 0;
} 

  

以上是关于BestCoder Round #70 Jam's math problem(hdu 5615)的主要内容,如果未能解决你的问题,请参考以下文章

BestCoder Round 70

[BestCoder Round #3] hdu 4908 BestCoder Sequence (计数)

BestCoder Round #75

BestCoder Round #69 (div.2)(hdu5611)

BestCoder Round #66 (div.2) hdu5592

BestCoder Round #73 (div.2)(hdu 5630)