POJ2299 Ultra-QuickSort

Posted ljh2000

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2299 Ultra-QuickSort相关的知识,希望对你有一定的参考价值。

 

Description

技术分享In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

 
 
正解一:归并排序
解题报告:
  大概题意是求数列的冒泡排序排序次数,求逆序对的模板题。
  直接归并排序的时候统计一下就可以了。
  归并排序的提交记录:
15602638 ljh2000 2299 Accepted 4220K 188MS G++ 1401B 2016-06-10 15:08:59
 
 1 //It is made by jump~
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <algorithm>
 8 #include <ctime>
 9 #include <vector>
10 #include <queue>
11 #include <map>
12 #include <set>
13 #ifdef WIN32   
14 #define OT "%I64d"
15 #else
16 #define OT "%lld"
17 #endif
18 using namespace std;
19 typedef long long LL;
20 const int MAXN = 500011;
21 int n,m;
22 int jump[MAXN];
23 int g[MAXN];
24 LL ans;
25 
26 inline int getint()
27 {
28        int w=0,q=0;
29        char c=getchar();
30        while((c<0 || c>9) && c!=-) c=getchar();
31        if (c==-)  q=1, c=getchar();
32        while (c>=0 && c<=9) w=w*10+c-0, c=getchar();
33        return q ? -w : w;
34 }
35 
36 inline void merge(int l,int mid,int r){
37     int i=l,j=mid+1;
38     int cnt=l;
39     while(i<=mid && j<=r) {
40     if(jump[i]<=jump[j])  g[cnt++]=jump[i++];
41     else{
42         g[cnt++]=jump[j++];
43         //ans+=mid-i+1;
44         ans+=(LL)mid; ans-=(LL)i; ans++;
45     }
46     }
47     while(i<=mid) g[cnt++]=jump[i++];
48     while(j<=r) g[cnt++]=jump[j++];
49     //for(;i<=mid;i++) g[cnt++]=a[i];
50     //for(;j<=r;j++) g[cnt++]=a[i];
51     for(i=l;i<=r;i++) jump[i]=g[i];
52 }
53 
54 inline void gui(int l,int r){
55     if(l==r) return ;
56     int mid=(l+r)/2;
57     gui(l,mid); gui(mid+1,r);
58     merge(l,mid,r);
59 }
60 
61 inline void solve(){
62     while(1) {
63     n=getint();
64     if(n==0) break;
65     for(int i=1;i<=n;i++) jump[i]=getint(); 
66     ans=0;
67     gui(1,n);
68     printf(OT"\n",ans);
69     }
70 }
71 
72 int main()
73 {
74   solve();
75   return 0;
76 }

 

正解二:树状数组

解题报告:

  树状数组也是可做的。

  由于数字比较大,先离散化一下,然后按顺序插入,插入之后看看已经有多少个数比自己大了,统计一下就可以了。

   比归并排序慢好多哦。。。

Run ID User Problem Result Memory Time Language Code Length Submit Time
15602746 ljh2000 2299 Accepted 7932K 532MS G++ 1256B 2016-06-10 15:41:43
 1 //It is made by jump~
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <algorithm>
 8 #include <ctime>
 9 #include <vector>
10 #include <queue>
11 #include <map>
12 #include <set>
13 #ifdef WIN32   
14 #define OT "%I64d"
15 #else
16 #define OT "%lld"
17 #endif
18 using namespace std;
19 typedef long long LL;
20 const int MAXN = 500011;
21 int n,L;
22 LL ans;
23 int a[MAXN],u[MAXN];
24 int shu[MAXN],rank[MAXN];
25 
26 inline int getint()
27 {
28        int w=0,q=0;
29        char c=getchar();
30        while((c<0 || c>9) && c!=-) c=getchar();
31        if (c==-)  q=1, c=getchar();
32        while (c>=0 && c<=9) w=w*10+c-0, c=getchar();
33        return q ? -w : w;
34 }
35 
36 inline void update(int x,int val){
37     while(x<=L) {
38     shu[x]+=val;
39     x+=x&(-x);
40     }
41 }
42 
43 inline LL query(int x){
44     LL total=0;
45     while(x>0) {
46     total+=shu[x];
47     x-=x&(-x);
48     }
49     return total;
50 }
51 
52 inline void solve(){
53     while(1) {
54     n=getint();
55     if(n==0) break;
56     for(int i=1;i<=n;i++) u[i]=a[i]=getint(); 
57     ans=0;
58     memset(shu,0,sizeof(shu));
59     sort(u+1,u+n+1);
60     L=unique(u+1,u+n+1)-u-1;
61     for(int i=1;i<=n;i++) {  
62         rank[i]=lower_bound(u+1,u+L+1,a[i])-u;
63         update(rank[i],1);
64         ans+=query(L)-query(rank[i]);
65     }
66 
67     printf(OT"\n",ans);
68     }
69 }
70 
71 int main()
72 {
73   solve();
74   return 0;
75 }

 

 
 

以上是关于POJ2299 Ultra-QuickSort的主要内容,如果未能解决你的问题,请参考以下文章

POJ——T 2299 Ultra-QuickSort

POJ 2299.Ultra-QuickSort

poj2299(归并排序求逆序对)

POJ 2299 Ultra-QuickSort

POJ2299 Ultra-QuickSort

poj2299 Ultra-QuickSort