《离散数学》——图论6.6
Posted 黑大帅之家
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《离散数学》——图论6.6相关的知识,希望对你有一定的参考价值。
关于简单的握手定理及其推论这里不在体现,这里我们记录三道利用握手定理并基于反证法的证明题。
Ex1:设n阶m条边的无向图G中,m=n+1,证明G中存在顶点v,满足d(v) ≥3。
证明:考虑反证法,既需要将待证命题的否命题归谬。首先我们写出带证明题的否命题:G中任意的顶点v,都满足d(v)≤2.
由握手定理可知,∑d(v) = 2m = 2(n+1) ,结合假设,∑d(v) ≤ 2n,即有2n + 2≤2n,矛盾。原命题的正确性得证。
Ex2:证明:空间不存在有奇数个面且每个面均有奇数条棱的多面体。
可以看到对于多面体,面与面之间存在公共棱,类比到图论中点与点之间的边,因此我们这里将这个多面体等价转化成有奇数个顶点的图。
因为每个面有奇数条棱,因此转化成图之后,d(v)是奇数,又考虑到有奇数个顶点,因此∑d(v)是奇数,这也是与握手定理相悖的。证毕。
Ex3:设G为9阶无向图,G的每个顶点的度数不是5就是6,。证明G中至少有5个6度顶点或至少有6个5度顶点。
依然考虑反证法,我们要证伪待证命题的否命题,否命题为:G中至多有4个6度顶点并且至多有5个5度顶点,考虑到G为9阶,这里我们只有一种构图方案,而这种方案的度数和是24+25 = 49,与握手定理相悖,证毕。
以上是关于《离散数学》——图论6.6的主要内容,如果未能解决你的问题,请参考以下文章
离散数学里图论一章中的树的权值是啥意思?而且在求最小生成树中不知道怎么算权,超级不解中.望解答!谢谢