matlab基本粒子群算法实现
Posted Mnster_Lu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了matlab基本粒子群算法实现相关的知识,希望对你有一定的参考价值。
最后在炼数成金那边找到了很好的一篇教程
在这里把它整理一下
做个粒子群算法的收尾
main.m
%% I. 清空环境 clc clear %% II. 绘制目标函数曲线 figure [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20; mesh(x,y,z) hold on %% III. 参数初始化 c1 = 1.49445; c2 = 1.49445; maxgen = 1000; % 进化次数 sizepop = 100; %种群规模 Vmax = 1; Vmin = -1; popmax = 5; popmin = -5; %% IV. 产生初始粒子和速度 for i = 1:sizepop % 随机产生一个种群 pop(i,:) = 5*rands(1,2); %初始种群 V(i,:) = rands(1,2); %初始化速度 % 计算适应度 fitness(i) = fun(pop(i,:)); %染色体的适应度 end %% V. 个体极值和群体极值 [bestfitness bestindex] = max(fitness); zbest = pop(bestindex,:); %全局最佳 gbest = pop; %个体最佳 fitnessgbest = fitness; %个体最佳适应度值 fitnesszbest = bestfitness; %全局最佳适应度值 %% VI. 迭代寻优 for i = 1:maxgen for j = 1:sizepop % 速度更新 V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:)); V(j,find(V(j,:)>Vmax)) = Vmax; V(j,find(V(j,:)<Vmin)) = Vmin; % 种群更新 pop(j,:) = pop(j,:) + V(j,:); pop(j,find(pop(j,:)>popmax)) = popmax; pop(j,find(pop(j,:)<popmin)) = popmin; % 适应度值更新 fitness(j) = fun(pop(j,:)); end for j = 1:sizepop % 个体最优更新 if fitness(j) > fitnessgbest(j) gbest(j,:) = pop(j,:); fitnessgbest(j) = fitness(j); end % 群体最优更新 if fitness(j) > fitnesszbest zbest = pop(j,:); fitnesszbest = fitness(j); end end yy(i) = fitnesszbest; end %% VII.输出结果 [fitnesszbest, zbest] plot3(zbest(1), zbest(2), fitnesszbest,\'bo\',\'linewidth\',1.5) figure plot(yy) title(\'最优个体适应度\',\'fontsize\',12); xlabel(\'进化代数\',\'fontsize\',12);ylabel(\'适应度\',\'fontsize\',12);
fun.m
function y = fun(x) %函数用于计算粒子适应度值 %x input 输入粒子 %y output 粒子适应度值 y = x(1).^2 + x(2).^2 - 10*cos(2*pi*x(1)) - 10*cos(2*pi*x(2)) + 20;
以上是关于matlab基本粒子群算法实现的主要内容,如果未能解决你的问题,请参考以下文章
路径优化基于人工蜂群(ABC)算法和粒子群优化算法的组合求解路径优化问题(Matlab代码实现)
Matlab算法粒子群算法求解二维线性优化问题(附MATLAB代码)