hdu 5459(递推好题)

Posted AC菜鸟机

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 5459(递推好题)相关的知识,希望对你有一定的参考价值。

Jesus Is Here

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 512    Accepted Submission(s): 368


Problem Description
I‘ve sent Fang Fang around 201314 text messages in almost 5 years. Why can‘t she make sense of what I mean?
``But Jesus is here!" the priest intoned. ``Show me your messages."
Fine, the first message is s1=c" and the second one is s2=ff".
The i-th message is si=si2+si1 afterwards. Let me give you some examples.
s3=cff", s4=ffcff" and s5=cffffcff".

``I found the i-th message‘s utterly charming," Jesus said.
``Look at the fifth message". s5=cffffcff" and two cff" appear in it.
The distance between the first cff" and the second one we said, is 5.
``You are right, my friend," Jesus said. ``Love is patient, love is kind.
It does not envy, it does not boast, it is not proud. It does not dishonor others, it is not self-seeking, it is not easily angered, it keeps no record of wrongs.
Love does not delight in evil but rejoices with the truth.
It always protects, always trusts, always hopes, always perseveres."

Listen - look at him in the eye. I will find you, and count the sum of distance between each two different cff" as substrings of the message.
 

 

Input
An integer T (1T100), indicating there are T test cases.
Following T lines, each line contain an integer n (3n201314), as the identifier of message.
 

 

Output
The output contains exactly T lines.
Each line contains an integer equaling to:
i<j:sn[i..i+2]=sn[j..j+2]=cff"(ji) mod 530600414,

where sn as a string corresponding to the n-th message.
 

 

Sample Input
9 5 6 7 8 113 1205 199312 199401 201314
 

 

Sample Output
Case #1: 5 Case #2: 16 Case #3: 88 Case #4: 352 Case #5: 318505405 Case #6: 391786781 Case #7: 133875314 Case #8: 83347132 Case #9: 16520782
 
这个题真的很难想,但是hdu划分其难度只有2,那么肯定要好好总结一下了。
给出前9项
c
0
ff
0
cff
0
ffcff
0
cffffcff
5
ffcffcffffcff
16
cffffcffffcffcffffcff
88
ffcffcffffcffcffffcffffcffcffffcff
352
cffffcffffcffcffffcffffcffcffffcffcffffcffffcffcffffcff
1552
 
题意:si = si-1+si-2 ,问第i个串中所有c距离之和为多少??
设dp[i]代表第i个串中c的距离之和.
那么dp[i] = dp[i-1]+dp[i-2]+Δ
关键是怎么求Δ。
我们设第i个串的长度为 len[i],那么容易得到 len[i] = len[i-1]+len[i-2] , len[1]=1,len[2]=2;
设第i个串中c的数量为 num[i],那么也容易得到 num[i]=num[i-2]+num[i-2],num[1]=1,num[2]=0;
接下来是最重要的:我们设dis[i]代表第i个串中所有的c到末尾的距离之和.那么dis[i]=dis[i-1]+dis[i-2]+num[i-2]*len[i-1],dis[1]=0,dis[2]=0,dis[i-1]+dis[i-2]的话不用说,num[i-2]*len[i-1]代表的是第i-2个串的所有的c到第i-1个串末尾的距离之和,那么增量肯定就是加上第i-2个串中所有的c的个数乘上第i-1个串的长度了。
接下来是如何将所有的条件用上了。
分段考虑:
1.考虑将i-2串中所有的c出发"跳跃"到i-2串的末尾,每个c进行num[i-1]次跳跃,所以总距离为dis[i-2]*num[i-1]
2.接下来考虑i-1串所有的c出发跳跃到i-1串的开头,这样是没办法直接求的,我们知道所有的c跳跃到末尾是dis[i-1],那么假设所有的c跳跃到开头走的总距离是L,那么L+dis[i-1]=len[i-1]*num[i-1],每个点进行i-2次跳跃,总共的距离是num[i-2]*(len[i-1]*num[i-1]-dis[i-1])
所以最后的结果为dp[i]=dp[i-1]+dp[i-2]+dis[i-2]*num[i-1]+num[i-2]*(len[i-1]*num[i-1]-dis[i-1])
记得碰到-号多加个mod..不然变成负数就错了!
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 201320;
const LL mod =530600414;
LL num[N],len[N],dis[N],dp[N];
void init()
{
    num[1]=1,num[2]=0,num[3]=1,num[4]=1;
    len[1]=1,len[2]=2,len[3]=3,len[4]=5;
    dis[1]=dis[2]=0,dis[3]=dis[4]=3;
    dp[1]=dp[2]=dp[3]=dp[4]=0,dp[5]=5;
    for(int i=5;i<=201316;i++){
        num[i]=(num[i-1]+num[i-2])%mod;
        len[i]=(len[i-1]+len[i-2])%mod;
    }
    for(int i=5;i<=201316;i++){
        dis[i]=((dis[i-1]+dis[i-2])%mod+num[i-2]*len[i-1]%mod)%mod;
    }
    for(int i=6;i<=201316;i++){
        dp[i] = ((dp[i-1]+dp[i-2])%mod+num[i-1]*dis[i-2]%mod+
                 (len[i-1]*num[i-1]%mod-dis[i-1]+mod)%mod*num[i-2]%mod)%mod;
    }
}
int main(){
    init();
    int tcase;
    scanf("%d",&tcase);
    for(int i=1;i<=tcase;i++){
        int n;
        scanf("%d",&n);
        printf("Case #%d: %lld\n",i,dp[n]);
    }
    return 0;
}

 

以上是关于hdu 5459(递推好题)的主要内容,如果未能解决你的问题,请参考以下文章

hdu 5459

BZOJ-4300: 绝世好题 (递推)

手把手带你刷好题—— 62.数字三角形(递推简单DP)

hdu4064 三进制状态压缩 好题!

hdu 2363(枚举+最短路好题)

hdu 3917 修路与公司 最大权闭合图 好题