ubuntu16.04服务器上无root权限,配置个人tensorflow环境--cuda9.0+cuDNN7+tensorflow-gpu-1.18

Posted junqingyang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ubuntu16.04服务器上无root权限,配置个人tensorflow环境--cuda9.0+cuDNN7+tensorflow-gpu-1.18相关的知识,希望对你有一定的参考价值。

本人在服务器上已经用Anconda创建好python3.5的环境,这个网上有一大堆教程。接下来是重点。

1. cuda的安装

https://developer.nvidia.com/cuda-downloads,选runfile(local)这个文件下载然后执行如下代码

  sh cuda_9.0.176_384.81_linux-run
chmod +x filename.run #如果不能直接运行,执行这个命令

在协议中选择同意EULA(accept),不安装driver installation (no),然后再安装cuda时选择个人用户的目录,如/home/yourname/cuda9,以及cudasamples的目录。

nvidia-smi #查看显卡驱动运行状态
nvcc -V  #查看cuda-toolkit安装是否成功

 

2.cuDNN文件导入cuda安装目录对应的位置

https://developer.nvidia.com/cudnn,这个需要注册,然后选择cudnn-9.0-linux-x64-v7.tgz这个下载--lib库

cp cuda/include/cudnn.h cuda9/include/ #cuda9是个人用户的下的目录/home/yourname/cuda9
cp cuda /lib64/libcudnn* cuda9/lib64/
chmod a+r cuda9/include/cudnn/h cuda9/lib64/libcudnn* 
cat ~/cuda91/include/cudnn.h | grep CUDNN_MAJOR -A5 #查看cuDNN安装状态
#查看结果
#define
CUDNN_MAJOR 7 #define CUDNN_MINOR 0 #define CUDNN_PATCHLEVEL 5 #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

 

3.在自己的.bashrc文件里添加环境变量

export PATH=/home/yourname/cuda9/bin:$PATH” #加入文件中
export LD_LIBRARY_PATH=/home/yourname/cuda9/lib64/ #加入文件中
soure ~/.bashrc #使修改后的环境变量生效

4.安装并测试tensorflow

import tensorflow as tf
x = tf.nn.conv2d(tf.ones([1,1,10,1]), tf.ones([1,5,1,1]), strides=[1, 1, 1, 1], padding=SAME)
with tf.Session() as sess:
    sess.run(x) # this should output a tensor of shape (1,1,10,1) with [3,4,5,5,5,5,5,5,4,3]

 

以上是关于ubuntu16.04服务器上无root权限,配置个人tensorflow环境--cuda9.0+cuDNN7+tensorflow-gpu-1.18的主要内容,如果未能解决你的问题,请参考以下文章

ubuntu 16.04配置svn服务器

Ubuntu16.04 启用root权限

Ubuntu16.04 配置samba

Ubuntu 16.04 NFS搭建

Ubuntu16.04开启root用户,并远程登录

Ubuntu16.04桌面系统如何配置和启动wireshark