POJ2699The Maximum Number of Strong Kings

Posted konjak魔芋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2699The Maximum Number of Strong Kings相关的知识,希望对你有一定的参考价值。

Description

A tournament can be represented by a complete graph in which each vertex denotes a player and a directed edge is from vertex x to vertex y if player x beats player y. For a player x in a tournament T, the score of x is the number of players beaten by x. The score sequence of T, denoted by S(T) = (s1, s2, . . . , sn), is a non-decreasing list of the scores of all the players in T. It can be proved that S(T) = (s1, s2, . . . , sn) is a score sequence of T if and only if 
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores. 
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2. 

 

Input

The first line of the input file contains an integer m, m <= 10, which represents the number of test cases. The following m lines contain m score sequences in which each line contains a score sequence. Note that each score sequence contains at most ten scores.

 

Output

The maximum number of strong kings for each test case line by line.

 

Sample Input

5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3

 

Sample Output

2
4
5
3
5
 
【分析】

  主要是有一个贪心的思想,就是如果有一种情况使其中k个人是能力者的话,那么总有一种情况使分数最高的k个人是能力者。(因为交换一下胜利的场就可以了)。所以可以枚举有k个人是能力者,规定后k个人就是能力者,建立约束图,跑最大流判满流即可。

 

  如下图(证明上面那一个贪心):

  假设有一种情况使得有k个能力者,但不是后k个,证明有一种情况是后k个都是能力者。

  上图,假设C是能力者但不是后k个,E不是能力者但是后k个。

  因为C是能力者E不是,则在E的后面必有一个G(随便是什么),C赢了它,E没有赢他。

  因为E的分数大于C,则在C之前必有一个A(随便是什么),C没有赢他,E赢了他。

  那么我们交换一下胜负场,C、E分数都不变,然后E离能力者更近一步。

  继续交换下去,后k个一定能成为能力者。

  证毕。

 

  于是建个图跑最大流。

  差不多这样建图:

  

 

代码如下:

  1 #include<cstdio>
  2 #include<cstdlib>
  3 #include<cstring>
  4 #include<iostream>
  5 #include<algorithm>
  6 #include<queue>
  7 using namespace std;
  8 #define Maxn 1100
  9 #define Maxm 100100
 10 #define INF 0xfffffff
 11 
 12 char s[1010];
 13 int a[Maxn],al,lg[Maxn];
 14 int dis[Maxn],first[Maxn];
 15 
 16 struct node
 17 {
 18     int x,y,f,o,next;
 19 }t[Maxm];int len;
 20 
 21 int st,ed,sum,h=0;
 22 
 23 int mymin(int x,int y) {return x<y?x:y;}
 24 
 25 void ins(int x,int y,int f)
 26 {
 27     if(f==0) return;
 28     if(y==ed) sum+=f;
 29     t[++len].x=x;t[len].y=y;t[len].f=f;
 30     t[len].next=first[x];first[x]=len;t[len].o=len+1;
 31     t[++len].x=y;t[len].y=x;t[len].f=0;
 32     t[len].next=first[y];first[y]=len;t[len].o=len-1;
 33 }
 34 
 35 queue<int > q;
 36 bool bfs()
 37 {
 38     while(!q.empty()) q.pop();
 39     memset(dis,-1,sizeof(dis));
 40     q.push(st);dis[st]=0;
 41     while(!q.empty())
 42     {
 43         int x=q.front();q.pop();
 44         for(int i=first[x];i;i=t[i].next) if(t[i].f>0)
 45         {
 46             int y=t[i].y;
 47             if(dis[y]==-1)
 48             {
 49                 dis[y]=dis[x]+1;
 50                 q.push(y);
 51             }
 52         }
 53     }
 54     if(dis[ed]==-1) return 0;
 55     return 1;
 56 }
 57 
 58 int ffind(int x,int flow)
 59 {
 60     if(x==ed) return flow;
 61     int now=0;
 62     for(int i=first[x];i;i=t[i].next) if(t[i].f>0)
 63     {
 64         int y=t[i].y;
 65         if(dis[y]==dis[x]+1)
 66         {
 67             int a=ffind(y,mymin(flow-now,t[i].f));
 68             t[i].f-=a;
 69             t[t[i].o].f+=a;
 70             now+=a;
 71         }
 72         if(now==flow) break;
 73     }
 74     if(now==0) dis[x]=-1;
 75     return now;
 76 }
 77 
 78 bool max_flow()
 79 {
 80     int ans=0;
 81     while(bfs())
 82     {
 83         ans+=ffind(st,INF);
 84     }
 85     if(ans==sum) return 1;
 86     return 0;
 87 }
 88 
 89 bool check(int x)
 90 {
 91     len=0;sum=0;h=ed;
 92     memset(first,0,sizeof(first));
 93     for(int i=al-x+1;i<=al;i++)
 94     {
 95         if(a[i]<lg[i]) return 0;
 96         ins(i,ed,a[i]-lg[i]);
 97         for(int j=i+1;j<=al-lg[i];j++)
 98         {
 99             ins(st,++h,1);
100             ins(h,i,1);
101             ins(h,j,1);
102         }
103     }
104     for(int i=1;i<=al-x;i++) ins(i,ed,a[i]);
105     for(int i=1;i<=al-x;i++)
106      for(int j=i+1;j<=al;j++)
107      {
108          ins(st,++h,1);
109          ins(h,i,1);
110          ins(h,j,1);
111      }
112     
113     if(max_flow()) return 1;
114     
115     return 0;
116 }
117 
118 int main()
119 {
120     int T;
121     scanf("%d",&T);getchar();
122     while(T--)
123     {
124         gets(s);
125         int l=strlen(s);
126         int now=0;al=0;
127         for(int i=0;i<l;i++)
128         {
129             if((s[i]<=\'0\'||s[i]>=\'9\')&&(i>=1&&s[i-1]>=\'0\'&&s[i-1]<=\'9\'))
130             {
131                 a[++al]=now;
132                 now=0;
133             }
134             else if(s[i]>=\'0\'&&s[i]<=\'9\')now=now*10+s[i]-\'0\';
135         }
136         if(s[l-1]>=\'0\'&&s[l-1]<=\'9\') a[++al]=now;
137         for(int i=1;i<=al;i++)
138         {
139             lg[i]=0;
140             for(int j=i+1;j<=al;j++) if(a[j]>a[i]) lg[i]++;
141         }
142         st=al+1;ed=st+1;h=ed;
143         int ans=0;
144         for(int i=al;i>=1;i--)
145         {
146             if(check(i)) {ans=i;break;} 
147         }
148         printf("%d\\n",ans);
149     }
150     return 0;
151 }
[POJ2699]

 

2016-06-05 10:17:08

 

以上是关于POJ2699The Maximum Number of Strong Kings的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2699 The Maximum Number of Strong Kings Description

poj2699 The Maximum Number of Strong Kings

POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

POJ2699The Maximum Number of Strong Kings(二分,最大流)

bzoj4604The kth maximum number

[bzoj4604] The kth maximum number