hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR

Posted longshenlmj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR相关的知识,希望对你有一定的参考价值。

hive语句执行顺序

msyql语句执行顺序

代码写的顺序:

select ... from... where.... group by... having... order by.. 
    或者
from ... select ...

代码的执行顺序:

from... where...group by... having.... select ... order by...

hive 语句执行顺序

大致顺序
from... where.... select...group by... having ... order by...

explain查看执行计划

hive语句和mysql都可以通过explain查看执行计划,这样就可以查看执行顺序,比如代码
    explain
    select city,ad_type,device,sum(cnt) as cnt
    from tb_pmp_raw_log_basic_analysis
    where day = ‘2016-05-28‘ and type = 0 and media = ‘sohu‘ and (deal_id = ‘‘ or deal_id = ‘-‘ or deal_id is NULL)    
    group by city,ad_type,device
显示执行计划如下
STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 is a root stage

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: tb_pmp_raw_log_basic_analysis
            Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (((deal_id = ‘‘) or (deal_id = ‘-‘)) or deal_id is null) (type: boolean)
              Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: city (type: string), ad_type (type: string), device (type: string), cnt (type: bigint)
                outputColumnNames: city, ad_type, device, cnt
                Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                Group By Operator
                  aggregations: sum(cnt)
                  keys: city (type: string), ad_type (type: string), device (type: string)
                  mode: hash
                  outputColumnNames: _col0, _col1, _col2, _col3
                  Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                  Reduce Output Operator
                    key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                    sort order: +++
                    Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
                    Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
                    value expressions: _col3 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: sum(VALUE._col0)
          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3
          Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
          Select Operator
            expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: bigint)
            outputColumnNames: _col0, _col1, _col2, _col3
            Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: false
              Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.TextInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1
具体介绍如下
**stage1的map阶段**
        TableScan:from加载表,描述中有行数和大小等
        Filter Operator:where过滤条件筛选数据,描述有具体筛选条件和行数、大小等
        Select Operator:筛选列,描述中有列名、类型,输出类型、大小等。
        Group By Operator:分组,描述了分组后需要计算的函数,keys描述用于分组的列,outputColumnNames为输出的列名,可以看出列默认使用固定的别名_col0,以及其他信息
        Reduce Output Operator:map端本地的reduce,进行本地的计算,然后按列映射到对应的reduce
**stage1的reduce阶段Reduce Operator Tree**
        Group By Operator:总体分组,并按函数计算。map计算后的结果在reduce端的合并。描述类似。mode: mergepartial是说合并map的计算结果。map端是hash映射分组
        Select Operator:最后过滤列用于输出结果
        File Output Operator:输出结果到临时文件中,描述介绍了压缩格式、输出文件格式。
        stage0第二阶段没有,这里可以实现limit 100的操作。

总结

1,每个stage都是一个独立的MR,复杂的hql语句可以产生多个stage,可以通过执行计划的描述,看看具体步骤是什么。
2,执行计划有时预测数据量,不是真实运行,可能不准确

group by的MR

hive语句最好写子查询嵌套,这样分阶段的导入数据,可以逐步减少数据量。但可能会浪费时间。所以需要设计好。
group by本身也是一种数据筛选,可以大量减少数据,尤其用于去重等方面,功效显著。但group by产生MR有时不可控,不知道在哪个阶段更好。尤其,map端本地的reduce减少数据有很大作用。

尤其,hadoop的MR不患寡而患不均。数据倾斜将是MR计算的最大瓶颈。hive中可以设置分区、桶、distribute by等来控制分配数据给Reduce。
那么,group by生成MR是否可以优化呢?
下面两端代码,可以对比一下,

代码1

explain
select advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media,count(1) as cnt
from (
  select 
    split(all,‘\\\\|~\\\\|‘)[41] as advertiser_id,
    split(all,‘\\\\|~\\\\|‘)[11] as crt_id,
    split(all,‘\\\\|~\\\\|‘)[8] as ad_place_id,
    split(all,‘\\\\|~\\\\|‘)[34] as channel,
    split(all,‘\\\\|~\\\\|‘)[42] as ad_type,
    split(all,‘\\\\|~\\\\|‘)[43] as rtb_type,
    split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1] as media
  from tb_pmp_raw_log_bid_tmp tb
) a 
group by advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media;

代码2

 explain
  select 
    split(all,‘\\\\|~\\\\|‘)[41] as advertiser_id,
    split(all,‘\\\\|~\\\\|‘)[11] as crt_id,
    split(all,‘\\\\|~\\\\|‘)[8] as ad_place_id,
    split(all,‘\\\\|~\\\\|‘)[34] as channel,
    split(all,‘\\\\|~\\\\|‘)[42] as ad_type,
    split(all,‘\\\\|~\\\\|‘)[43] as rtb_type,
    split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1] as media
  from tb_pmp_raw_log_bid_tmp tb
  group by split(all,‘\\\\|~\\\\|‘)[41],split(all,‘\\\\|~\\\\|‘)[11],split(all,‘\\\\|~\\\\|‘)[8],split(all,‘\\\\|~\\\\|‘)[34],split(all,‘\\\\|~\\\\|‘)[42],split(all,‘\\\\|~\\\\|‘)[43],split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1]
先进行子查询,然后group by,还是直接group by,两种那个好一点,
我个人测试后认为,数据量小,第一种会好一点,如果数据量大,可能第二种会好。至于数据量多大。TB级以下的都是小数据。

两个执行计划对比如下,可以看出基本执行的步骤的数据分析量差不多。
group by一定要用,但内外,先后执行顺序效果差不多。

代码1

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 is a root stage

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: tb
            Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
            Select Operator
              expressions: split(all, ‘\\|~\\|‘)[41] (type: string), split(all, ‘\\|~\\|‘)[11] (type: string), split(all, ‘\\|~\\|‘)[8] (type: string), split(all, ‘\\|~\\|‘)[34] (type: string), split(all, ‘\\|~\\|‘)[42] (type: string), split(all, ‘\\|~\\|‘)[43] (type: string), split(split(all, ‘\\|~\\|‘)[5], ‘/‘)[1] (type: string)
              outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
              Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
              Group By Operator
                aggregations: count(1)
                keys: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
                Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                  sort order: +++++++
                  Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                  Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                  value expressions: _col7 (type: bigint)
      Reduce Operator Tree:
        Group By Operator
          aggregations: count(VALUE._col0)
          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
          Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
          Select Operator
            expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string), _col7 (type: bigint)
            outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
            Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: false
              Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.TextInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1

代码2

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 is a root stage

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: tb
            Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
            Select Operator


              expressions: all (type: string)
              outputColumnNames: all
              Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
              Group By Operator

                keys: split(all, ‘\\|~\\|‘)[41] (type: string), split(all, ‘\\|~\\|‘)[11] (type: string), split(all, ‘\\|~\\|‘)[8] (type: string), split(all, ‘\\|~\\|‘)[34] (type: string), split(all, ‘\\|~\\|‘)[42] (type: string), split(all, ‘\\|~\\|‘)[43] (type: string), split(split(all, ‘\\|~\\|‘)[5], ‘/‘)[1] (type: string)
                mode: hash
                outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
                Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
                Reduce Output Operator
                  key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                  sort order: +++++++
                  Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
                  Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:
        Group By Operator

          keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
          mode: mergepartial
          outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
          Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
          Select Operator
            expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
            outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
            Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
            File Output Operator
              compressed: false
              Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
              table:
                  input format: org.apache.hadoop.mapred.TextInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
                  serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

  Stage: Stage-0
    Fetch Operator
      limit: -1

以上是关于hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR的主要内容,如果未能解决你的问题,请参考以下文章

Hive SQL语句的正确执行顺序

Hive SQL语句的正确执行顺序

hive的高阶函数

Hive DML常见操作

hive上执行查询语句时无结果反馈,是啥原因?

Hive,Hive on Spark和SparkSQL区别