hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR
Posted longshenlmj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR相关的知识,希望对你有一定的参考价值。
hive语句执行顺序
msyql语句执行顺序
代码写的顺序:
select ... from... where.... group by... having... order by..
或者
from ... select ...
代码的执行顺序:
from... where...group by... having.... select ... order by...
hive 语句执行顺序
大致顺序
from... where.... select...group by... having ... order by...
explain查看执行计划
hive语句和mysql都可以通过explain查看执行计划,这样就可以查看执行顺序,比如代码
explain
select city,ad_type,device,sum(cnt) as cnt
from tb_pmp_raw_log_basic_analysis
where day = ‘2016-05-28‘ and type = 0 and media = ‘sohu‘ and (deal_id = ‘‘ or deal_id = ‘-‘ or deal_id is NULL)
group by city,ad_type,device
显示执行计划如下
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: tb_pmp_raw_log_basic_analysis
Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (((deal_id = ‘‘) or (deal_id = ‘-‘)) or deal_id is null) (type: boolean)
Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: city (type: string), ad_type (type: string), device (type: string), cnt (type: bigint)
outputColumnNames: city, ad_type, device, cnt
Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: sum(cnt)
keys: city (type: string), ad_type (type: string), device (type: string)
mode: hash
outputColumnNames: _col0, _col1, _col2, _col3
Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string)
sort order: +++
Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string)
Statistics: Num rows: 8195357 Data size: 580058024 Basic stats: COMPLETE Column stats: NONE
value expressions: _col3 (type: bigint)
Reduce Operator Tree:
Group By Operator
aggregations: sum(VALUE._col0)
keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string)
mode: mergepartial
outputColumnNames: _col0, _col1, _col2, _col3
Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: bigint)
outputColumnNames: _col0, _col1, _col2, _col3
Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 4097678 Data size: 290028976 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
具体介绍如下
**stage1的map阶段**
TableScan:from加载表,描述中有行数和大小等
Filter Operator:where过滤条件筛选数据,描述有具体筛选条件和行数、大小等
Select Operator:筛选列,描述中有列名、类型,输出类型、大小等。
Group By Operator:分组,描述了分组后需要计算的函数,keys描述用于分组的列,outputColumnNames为输出的列名,可以看出列默认使用固定的别名_col0,以及其他信息
Reduce Output Operator:map端本地的reduce,进行本地的计算,然后按列映射到对应的reduce
**stage1的reduce阶段Reduce Operator Tree**
Group By Operator:总体分组,并按函数计算。map计算后的结果在reduce端的合并。描述类似。mode: mergepartial是说合并map的计算结果。map端是hash映射分组
Select Operator:最后过滤列用于输出结果
File Output Operator:输出结果到临时文件中,描述介绍了压缩格式、输出文件格式。
stage0第二阶段没有,这里可以实现limit 100的操作。
总结
1,每个stage都是一个独立的MR,复杂的hql语句可以产生多个stage,可以通过执行计划的描述,看看具体步骤是什么。
2,执行计划有时预测数据量,不是真实运行,可能不准确
group by的MR
hive语句最好写子查询嵌套,这样分阶段的导入数据,可以逐步减少数据量。但可能会浪费时间。所以需要设计好。
group by本身也是一种数据筛选,可以大量减少数据,尤其用于去重等方面,功效显著。但group by产生MR有时不可控,不知道在哪个阶段更好。尤其,map端本地的reduce减少数据有很大作用。
尤其,hadoop的MR不患寡而患不均。数据倾斜将是MR计算的最大瓶颈。hive中可以设置分区、桶、distribute by等来控制分配数据给Reduce。
那么,group by生成MR是否可以优化呢?
下面两端代码,可以对比一下,
代码1
explain
select advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media,count(1) as cnt
from (
select
split(all,‘\\\\|~\\\\|‘)[41] as advertiser_id,
split(all,‘\\\\|~\\\\|‘)[11] as crt_id,
split(all,‘\\\\|~\\\\|‘)[8] as ad_place_id,
split(all,‘\\\\|~\\\\|‘)[34] as channel,
split(all,‘\\\\|~\\\\|‘)[42] as ad_type,
split(all,‘\\\\|~\\\\|‘)[43] as rtb_type,
split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1] as media
from tb_pmp_raw_log_bid_tmp tb
) a
group by advertiser_id,crt_id,ad_place_id,channel,ad_type,rtb_type,media;
代码2
explain
select
split(all,‘\\\\|~\\\\|‘)[41] as advertiser_id,
split(all,‘\\\\|~\\\\|‘)[11] as crt_id,
split(all,‘\\\\|~\\\\|‘)[8] as ad_place_id,
split(all,‘\\\\|~\\\\|‘)[34] as channel,
split(all,‘\\\\|~\\\\|‘)[42] as ad_type,
split(all,‘\\\\|~\\\\|‘)[43] as rtb_type,
split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1] as media
from tb_pmp_raw_log_bid_tmp tb
group by split(all,‘\\\\|~\\\\|‘)[41],split(all,‘\\\\|~\\\\|‘)[11],split(all,‘\\\\|~\\\\|‘)[8],split(all,‘\\\\|~\\\\|‘)[34],split(all,‘\\\\|~\\\\|‘)[42],split(all,‘\\\\|~\\\\|‘)[43],split(split(all,‘\\\\|~\\\\|‘)[5],‘/‘)[1]
先进行子查询,然后group by,还是直接group by,两种那个好一点,
我个人测试后认为,数据量小,第一种会好一点,如果数据量大,可能第二种会好。至于数据量多大。TB级以下的都是小数据。
两个执行计划对比如下,可以看出基本执行的步骤的数据分析量差不多。
group by一定要用,但内外,先后执行顺序效果差不多。
代码1
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: tb
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: split(all, ‘\\|~\\|‘)[41] (type: string), split(all, ‘\\|~\\|‘)[11] (type: string), split(all, ‘\\|~\\|‘)[8] (type: string), split(all, ‘\\|~\\|‘)[34] (type: string), split(all, ‘\\|~\\|‘)[42] (type: string), split(all, ‘\\|~\\|‘)[43] (type: string), split(split(all, ‘\\|~\\|‘)[5], ‘/‘)[1] (type: string)
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: count(1)
keys: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
mode: hash
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
sort order: +++++++
Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
value expressions: _col7 (type: bigint)
Reduce Operator Tree:
Group By Operator
aggregations: count(VALUE._col0)
keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
mode: mergepartial
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string), _col7 (type: bigint)
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6, _col7
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
代码2
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: tb
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: all (type: string)
outputColumnNames: all
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Group By Operator
keys: split(all, ‘\\|~\\|‘)[41] (type: string), split(all, ‘\\|~\\|‘)[11] (type: string), split(all, ‘\\|~\\|‘)[8] (type: string), split(all, ‘\\|~\\|‘)[34] (type: string), split(all, ‘\\|~\\|‘)[42] (type: string), split(all, ‘\\|~\\|‘)[43] (type: string), split(split(all, ‘\\|~\\|‘)[5], ‘/‘)[1] (type: string)
mode: hash
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
sort order: +++++++
Map-reduce partition columns: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
Statistics: Num rows: 1126576783 Data size: 112657678336 Basic stats: COMPLETE Column stats: NONE
Reduce Operator Tree:
Group By Operator
keys: KEY._col0 (type: string), KEY._col1 (type: string), KEY._col2 (type: string), KEY._col3 (type: string), KEY._col4 (type: string), KEY._col5 (type: string), KEY._col6 (type: string)
mode: mergepartial
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: string), _col1 (type: string), _col2 (type: string), _col3 (type: string), _col4 (type: string), _col5 (type: string), _col6 (type: string)
outputColumnNames: _col0, _col1, _col2, _col3, _col4, _col5, _col6
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 563288391 Data size: 56328839118 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
以上是关于hive高阶1--sql和hive语句执行顺序explain查看执行计划group by生成MR的主要内容,如果未能解决你的问题,请参考以下文章