神经网络入门-用python实现一个两层神经网络并在CIFAR10数据集上调参

Posted Super_JJboom

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了神经网络入门-用python实现一个两层神经网络并在CIFAR10数据集上调参相关的知识,希望对你有一定的参考价值。

下面是我从cs231n上整理的神经网络的入门实现,麻雀虽小,五脏俱全,基本上神经网络涉及到的知识点都有在代码中体现。

理论看上千万遍,不如看一遍源码跑一跑。

源码上我已经加了很多注释,结合代码看一遍很容易理解。

最后可视化权重的图:

 

主文件,用来训练调参

two_layer_net.py

  1 # coding: utf-8
  2 
  3 # 实现一个简单的神经网络并在CIFAR10上测试性能
  4 
  5 import numpy as np
  6 import matplotlib.pyplot as plt
  7 from neural_net import TwoLayerNet
  8 from data_utils import load_CIFAR10
  9 from vis_utils import visualize_grid
 10 
 11 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
 12     cifar10_dir = \'cs231n/datasets/cifar-10-batches-py\'
 13     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
 14         
 15     # 采样
 16     mask = list(range(num_training, num_training + num_validation))
 17     X_val = X_train[mask]
 18     y_val = y_train[mask]
 19     mask = list(range(num_training))
 20     X_train = X_train[mask]
 21     y_train = y_train[mask]
 22     mask = list(range(num_test))
 23     X_test = X_test[mask]
 24     y_test = y_test[mask]
 25 
 26     # 归一化操作:减去均值,使得数据以0为中心
 27     mean_image = np.mean(X_train, axis=0)
 28     X_train -= mean_image
 29     X_val -= mean_image
 30     X_test -= mean_image
 31 
 32     X_train = X_train.reshape(num_training, -1)
 33     X_val = X_val.reshape(num_validation, -1)
 34     X_test = X_test.reshape(num_test, -1)
 35 
 36     return X_train, y_train, X_val, y_val, X_test, y_test
 37 
 38 
 39 X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()
 40 print(\'Train data shape: \', X_train.shape)
 41 print(\'Train labels shape: \', y_train.shape)
 42 print(\'Validation data shape: \', X_val.shape)
 43 print(\'Validation labels shape: \', y_val.shape)
 44 print(\'Test data shape: \', X_test.shape)
 45 print(\'Test labels shape: \', y_test.shape)
 46 
 47 
 48 #第一次训练
 49 input_size = 32 * 32 * 3
 50 hidden_size = 50
 51 num_classes = 10
 52 net = TwoLayerNet(input_size, hidden_size, num_classes)
 53 stats = net.train(X_train, y_train, X_val, y_val,
 54             num_iters=1000, batch_size=200,
 55             learning_rate=1e-4, learning_rate_decay=0.95,
 56             reg=0.25, verbose=True)
 57 val_acc = (net.predict(X_val) == y_val).mean()
 58 print(\'Validation accuracy: \', val_acc)
 59 
 60 #效果不太理想,debug
 61 
 62 # 先画一下loss和正确率的曲线看一看
 63 plt.subplot(2, 1, 1)
 64 plt.plot(stats[\'loss_history\'])
 65 plt.title(\'Loss history\')
 66 plt.xlabel(\'Iteration\')
 67 plt.ylabel(\'Loss\')
 68 
 69 plt.subplot(2, 1, 2)
 70 plt.plot(stats[\'train_acc_history\'], label=\'train\')
 71 plt.plot(stats[\'val_acc_history\'], label=\'val\')
 72 plt.title(\'Classification accuracy history\')
 73 plt.xlabel(\'Epoch\')
 74 plt.ylabel(\'Clasification accuracy\')
 75 plt.show()
 76 
 77 
 78 
 79 #可视化一下权重
 80 def show_net_weights(net):
 81     W1 = net.params[\'W1\']
 82     W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
 83     plt.imshow(visualize_grid(W1, padding=3).astype(\'uint8\'))
 84     plt.gca().axis(\'off\')
 85     plt.show()
 86 
 87 show_net_weights(net)
 88 
 89 
 90 #通过上面的曲线我们可以看到基本上loss还在线性下降,表示我们的loss下降的还不够。
 91 #一方面,我们可以加大学习率使loss更加快速的下降,另一方面,也可以增加迭代的次数,让loss继续下降。
 92 #还有,在训练集和验证集上的正确率没有明显差距,表明网络的容量可能不够,可以尝试增加网络的复杂度使之拥有更强的表达能力。
 93 
 94 
 95 
 96 #下面是我调出来的参数,实际上选了很久 ,在测试集上的正确率在55%左右
 97 hidden_size = 150#[50,70,100,130]
 98 learning_rates = 1e-3#np.array([0.5,1,1.5])*1e-3
 99 regularization_strengths = 0.2#[0.1,0.2,0.3]
100 best_net = None
101 results = {}
102 best_val_acc = 0
103 
104 
105 for hs in hidden_size:
106     for lr in learning_rates:
107         for reg in regularization_strengths:
108             
109             net = TwoLayerNet(input_size, hs, num_classes)
110             # Train the network
111             stats = net.train(X_train, y_train, X_val, y_val,
112             num_iters=3000, batch_size=200,
113             learning_rate=lr, learning_rate_decay=0.95,
114             reg= reg, verbose=False)
115             val_acc = (net.predict(X_val) == y_val).mean()
116             if val_acc > best_val_acc:
117                 best_val_acc = val_acc
118                 best_net = net         
119             results[(hs,lr,reg)] = val_acc
120             
121             plt.subplot(2, 1, 1)
122             plt.plot(stats[\'loss_history\'])
123             plt.title(\'Loss history\')
124             plt.xlabel(\'Iteration\')
125             plt.ylabel(\'Loss\')
126 
127             plt.subplot(2, 1, 2)
128             plt.plot(stats[\'train_acc_history\'], label=\'train\')
129             plt.plot(stats[\'val_acc_history\'], label=\'val\')
130             plt.title(\'Classification accuracy history\')
131             plt.xlabel(\'Epoch\')
132             plt.ylabel(\'Clasification accuracy\')
133             plt.show()
134 
135 
136 for hs,lr, reg in sorted(results):
137     val_acc = results[(hs, lr, reg)]
138     print (\'hs %d lr %e reg %e val accuracy: %f\' % (hs, lr, reg,  val_acc))
139     
140 print (\'best validation accuracy achieved during cross-validation: %f\' % best_val_acc)
141 
142 
143 show_net_weights(best_net)
144 test_acc = (best_net.predict(X_test) == y_test).mean()
145 print(\'Test accuracy: \', test_acc)
View Code

定义神经网络和前向反向计算、损失函数、自动训练的类

neural_net.py

  1 import numpy as np
  2 import matplotlib.pyplot as plt
  3 
  4 class TwoLayerNet(object):
  5   """
  6   两层的全连接网络。使用sotfmax损失函数和L2正则,非线性函数采用Relu函数。
  7   网络结构:input - fully connected layer - ReLU - fully connected layer - softmax
  8   """
  9 
 10   def __init__(self, input_size, hidden_size, output_size, std=1e-4):
 11     """
 12     初始化模型。
 13     初始化权重矩阵W和偏置b。这里b置为零,但是Alexnet论文中说采用Relu函数激活时b置为1可以更快的收敛。
 14     参数都保存在self.params字典中。
 15     键为:
 16     W1 (D, H)
 17     b1 (H,)
 18     W2 (H, C)
 19     b2 (C,)
 20     D,H,C分别表示输入数据的维度,隐藏层大小,输出类别的个数
 21     """
 22     self.params = {}
 23     self.params[\'W1\'] = std * np.random.randn(input_size, hidden_size)
 24     self.params[\'b1\'] = np.zeros(hidden_size)
 25     self.params[\'W2\'] = std * np.random.randn(hidden_size, output_size)
 26     self.params[\'b2\'] = np.zeros(output_size)
 27 
 28   def loss(self, X, y=None, reg=0.0):
 29     """
 30     如果是在训练过程,计算损失和梯度,如果是在测试过程,返回最后一层的输入,即每个类的得分。
 31 
 32     Inputs:
 33     - X (N, D).  X[i] 为一个训练样本。
 34     - y: 标签。如果为None则表示是在进行测试过程,否则是在进行训练过程。
 35     - reg: Regularization strength.
 36 
 37     Returns:
 38     如果y=None,返回shape为(N, C)的矩阵,scores[i, c]表示输入i在c类上的得分。
 39 
 40     如果y!=None, 返回一个tuple:
 41     - loss: 包括数据损失和正则损失两部分。
 42     - grads: 各个参数的梯度。
 43     """
 44     
 45     W1, b1 = self.params[\'W1\'], self.params[\'b1\']
 46     W2, b2 = self.params[\'W2\'], self.params[\'b2\']
 47     N, D = X.shape
 48     C=b2.shape[0]
 49     
 50     #forward pass
 51     h1=np.maximum(0,np.dot(X,W1)+b1)
 52     h2=np.dot(h1,W2)+b2
 53     scores=h2
 54     
 55     if y is None:
 56       return scores
 57 
 58     # 计算loss
 59     shift_scores=scores-np.max(scores,axis=1).reshape(-1,1)
 60     exp_scores=np.exp(shift_scores)
 61     softmax_out=exp_scores/np.sum(exp_scores,axis=1).reshape(-1,1)
 62     loss=np.sum(-np.log(softmax_out[range(N),y]))/N+reg * (np.sum(W1 * W1) + np.sum(W2 * W2))
 63     print(np.sum(-np.log(softmax_out[range(N),y]))/N,reg * (np.sum(W1 * W1) + np.sum(W2 * W2)))
 64 
 65     # Backward pass: 计算梯度,梯度的计算就是链式求导的过程
 66     grads = {}
 67 
 68     dscores = softmax_out.copy()
 69     dscores[range(N),y]-=1
 70     dscores /= N
 71     
 72     grads[\'W2\']=np.dot(h1.T,dscores)+2*reg*W2
 73     grads[\'b2\']=np.sum(dscores,axis=0)
 74     
 75     dh=np.dot(dscores,W2.T)
 76     d_max=(h1>0)*dh
 77     
 78     grads[\'W1\'] = X.T.dot(d_max) + 2*reg * W1
 79     grads[\'b1\'] = np.sum(d_max, axis = 0)
 80 
 81     return loss, grads
 82 
 83   def train(self, X, y, X_val, y_val,
 84             learning_rate=1e-3, learning_rate_decay=0.95,
 85             reg=5e-6, num_iters=100,
 86             batch_size=200, verbose=False):
 87     """
 88     自动化训练过程。采用SGD优化。
 89 
 90     Inputs:
 91     - X (N, D):训练输入。
 92     - y (N,) :标签。 y[i] = c 表示X[i]的类别下标是c。
 93     - X_val (N_val, D):验证集输入。
 94     - y_val (N_val,): 验证集标签。
 95     - learning_rate: 
 96     - learning_rate_decay: 学习率的损失因子。
 97     - reg: regularization strength。
 98     - num_iters: 迭代次数。
 99     - batch_size: 每次迭代的数据批大小。.
100     - verbose: 是否显示训练进度。
101     """
102     num_train = X.shape[0]
103     iterations_per_epoch = max(num_train / batch_size, 1)
104 
105     loss_history = []
106     train_acc_history = []
107     val_acc_history = []
108 
109     for it in range(num_iters):
110       #随机选择一批数据
111       idx = np.random.choice(num_train, batch_size, replace=True)
112       X_batch = X[idx]
113       y_batch = y[idx]
114       # 计算损失和梯度
115       loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
116       loss_history.append(loss)
117       #更新参数
118       self.params[\'W2\'] += - learning_rate * grads[\'W2\']
119       self.params[\'b2\'] += - learning_rate * grads[\'b2\']
120       self.params[\'W1\'] += - learning_rate * grads[\'W1\']
121       self.params[\'b1\'] += - learning_rate * grads[\'b1\']
122       #可视化进度
123       if verbose and it % 100 == 0:
124         print(\'iteration %d / %d: loss %f\' % (it, num_iters, loss))
125 
126       # 每个epoch保存一次数据记录
127       if it % iterations_per_epoch == 0:
128         train_acc = (self.predict(X_batch) == y_batch).mean()
129         val_acc = (self.predict(X_val) == y_val).mean()
130         train_acc_history.append(train_acc)
131         val_acc_history.append(val_acc)
132         #学习率衰减
133         learning_rate *= learning_rate_decay
134     return {
135       \'loss_history\': loss_history,
136       \'train_acc_history\': train_acc_history,
137       \'val_acc_history\': val_acc_history,
138     }
139 
140   def predict(self, X):
141     """
142     使用训练好的参数预测输入的标签。
143 
144     Inputs:
145     - X (N, D): 需要预测的输入。
146 
147     Returns:
148     - y_pred (N,):每个输入的预测分类下标。
149     """
150     
151     h = np.maximum(0, X.dot(self.params[\'W1\']) + self.params[\'b1\'])
152     scores = h.dot(self.params[\'W2\']) + self.params[\'b2\']
153     y_pred = np.argmax(scores, axis=1)
154 
155     return y_pred
View Code

载入CIFAR10数据的函数

data_utils.py

 1 from six.moves import cPickle as pickle
 2 import numpy as np
 3 import os
 4 from scipy.misc import imread
 5 import platform
 6 
 7 def load_pickle(f):
 8     version = platform.python_version_tuple()
 9     if version[0] == \'2\':
10         return  pickle.load(f)
11     elif version[0] == \'3\':
12         return  pickle.load(f, encoding=\'latin1\')
13     raise ValueError("invalid python version: {}".format(version))
14 
15 def load_CIFAR_batch(filename):
16   """ CIRAR的数据是分批的,这个函数的功能是载入一批数据 """
17   with open(filename, \'rb\') as f:
18     datadict = load_pickle(f) #以二进制方式打开文件
19     X = datadict[\'data\']
20     Y = datadict[\'labels\']
21     X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
22     Y = np.array(Y)
23     return X, Y
24 
25 def load_CIFAR10(ROOT):
26   """ load 所有的数据 """
27   xs = []
28   ys = []
29   for b in range(1,6):
30     f = os.path.join(ROOT, \'data_batch_%d\' % (b, ))
31     X, Y = load_CIFAR_batch(f)
32     xs.append(X)
33     ys.append(Y)    
34   Xtr = np.concatenate(xs)
35   Ytr = np.concatenate(ys)
36   del X, Y
37   Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, \'test_batch\'))
38   return Xtr, Ytr, Xte, Yte
View Code

可视化用到的函数

vis_utils.py

 1 from math import sqrt, ceil
 2 import numpy as np
 3 
 4 def visualize_grid(Xs, ubound=255.0, padding=1):
 5   """
 6   #把4维的数据显示在平面图上,也就是把(N, H, W, C)N张3通道的图片同时显示出来
 7 
 8   Inputs:
 9   - Xs:(N, H, W, C)shape的数据
10   - ubound: 像素会被放缩到【0,ubound】之间
11   - padding: 方块之间的间隔填充
12   """
13   (N, H, W, C) = Xs.shape
14   grid_size = int(ceil(sqrt(N)))
15   grid_height = H * grid_size + padding * (grid_size - 1)
16   grid_width = W * grid_size + padding * (grid_size - 1)
17   grid = np.zeros((grid_height, grid_width, C))
18   next_idx = 0
19   y0, y1 = 0, H
20   for y in range(grid_size):
21     x0, x1 = 0, W
22     for x in range(grid_size):
23       if next_idx < N:
24         img = Xs[next_idx]
25         low, high = np.min(img), np.max(img)
26         grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low)
27         next_idx += 1
28       x0 += W + padding
29       x1 += W + padding
30     y0 += H + padding
31     y1 += H + padding
32   return grid
View Code

 

以上是关于神经网络入门-用python实现一个两层神经网络并在CIFAR10数据集上调参的主要内容,如果未能解决你的问题,请参考以下文章

PyTorch深度学习实践入门01

PyTorch深度学习实践入门01

神经网络进阶-用python实现一个完整的神经网络框架并在CIFAR10数据集上调参

神经网络入门——15反向传播

入门 一文简述循环神经网络

神经网络的学习-搭建神经网络实现mnist数据集分类