TensorFlow 同时调用多个预训练好的模型

Posted seniusen

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow 同时调用多个预训练好的模型相关的知识,希望对你有一定的参考价值。

在某些任务中,我们需要针对不同的情况训练多个不同的神经网络模型,这时候,在测试阶段,我们就需要调用多个预训练好的模型分别来进行预测。

弄明白了如何调用单个模型,其实调用多个模型也就顺理成章。我们只需要建立多个图,然后每个图导入一个模型,再针对每个图创建一个会话,分别进行预测即可。

import tensorflow as tf
import numpy as np

# 建立两个 graph
g1 = tf.Graph()
g2 = tf.Graph()

# 为每个 graph 建创建一个 session
sess1 = tf.Session(graph=g1)
sess2 = tf.Session(graph=g2)

X_1 = None
tst_1 = None
yhat_1 = None

X_2 = None
tst_2 = None
yhat_2 = None

def load_model(sess):
    """
        Loading the pre-trained model and parameters.
    """
    global X_1, tst_1, yhat_1
    with sess1.as_default():
        with sess1.graph.as_default():
            modelpath = r‘F:/resnet/model/new0.25-0.35/‘
            saver = tf.train.import_meta_graph(modelpath + ‘model-10.meta‘)
            saver.restore(sess1, tf.train.latest_checkpoint(modelpath))
            graph = tf.get_default_graph()
            X_1 = graph.get_tensor_by_name("X:0")
            tst_1 = graph.get_tensor_by_name("tst:0")
            yhat_1 = graph.get_tensor_by_name("tanh:0")
            print(‘Successfully load the model_1!‘)

            
def load_model_2():
    """
        Loading the pre-trained model and parameters.
    """
    global X_2, tst_2, yhat_2
    with sess2.as_default():
        with sess2.graph.as_default():
            modelpath = r‘F:/resnet/model/new0.25-0.352/‘
            saver = tf.train.import_meta_graph(modelpath + ‘model-10.meta‘)
            saver.restore(sess2, tf.train.latest_checkpoint(modelpath))
            graph = tf.get_default_graph()
            X_2 = graph.get_tensor_by_name("X:0")
            tst_2 = graph.get_tensor_by_name("tst:0")
            yhat_2 = graph.get_tensor_by_name("tanh:0")
            print(‘Successfully load the model_2!‘)
    
def test_1(txtdata):
    """
        Convert data to Numpy array which has a shape of (-1, 41, 41, 41, 3).
        Test a single axample.
        Arg:
                txtdata: Array in C.
        Returns:
            The normal of a face.
    """
    global X_1, tst_1, yhat_1
    data = np.array(txtdata)
    data = data.reshape(-1, 41, 41, 41, 3)
    output = sess1.run(yhat_1, feed_dict={X_1: data, tst_1: True})  # (100, 3)
    output = output.reshape(-1, 1)
    ret = output.tolist()
    return ret


def test_2(txtdata):
    """
        Convert data to Numpy array which has a shape of (-1, 41, 41, 41, 3).
        Test a single axample.
        Arg:
                txtdata: Array in C.
        Returns:
            The normal of a face.
    """
    global X_2, tst_2, yhat_2

    data = np.array(txtdata)
    data = data.reshape(-1, 41, 41, 41, 3)
    output = sess2.run(yhat_2, feed_dict={X_2: data, tst_2: True})  # (100, 3)
    output = output.reshape(-1, 1)
    ret = output.tolist()

    return ret

最后,本程序只是为了说明问题,抛砖引玉,代码有很多冗余之处,不要模仿!

获取更多精彩,请关注「seniusen」!
技术分享图片


以上是关于TensorFlow 同时调用多个预训练好的模型的主要内容,如果未能解决你的问题,请参考以下文章

在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现

tensorflow 训练好的模型,怎么 调用

tensorflow利用预训练模型进行目标检测:预训练模型的使用

求助 tensorflow怎样恢复预训练的模型啊

Tensorflow加载预训练模型的特殊操作

Tensorflow加载预训练模型的特殊操作