把 Elasticsearch 当数据库使:聚合后排序
Posted 步履不停
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了把 Elasticsearch 当数据库使:聚合后排序相关的知识,希望对你有一定的参考价值。
使用 https://github.com/taowen/es-monitor 可以用 SQL 进行 elasticsearch 的查询。有的时候分桶聚合之后会产生很多的桶,我们只对其中部分的桶关心。最简单的办法就是排序之后然后取前几位的结果。
ORDER BY _term
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year, COUNT(*) FROM symbol GROUP BY ipo_year ORDER BY ipo_year LIMIT 2 EOF {"COUNT(*)": 4, "ipo_year": 1972} {"COUNT(*)": 1, "ipo_year": 1973}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"_term": "asc"
}
],
"size": 2
},
"aggs": {}
}
},
"size": 0
}
因为 ipo_year 是 GROUP BY 的字段,所以按这个排序用_term指代。
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 3,
"aggregations": {
"ipo_year": {
"buckets": [
{
"key": 1972,
"doc_count": 4
},
{
"key": 1973,
"doc_count": 1
}
],
"sum_other_doc_count": 2893,
"doc_count_error_upper_bound": 0
}
},
"timed_out": false
}
ORDER BY _count
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year, COUNT(*) AS ipo_count FROM symbol GROUP BY ipo_year ORDER BY ipo_count LIMIT 2 EOF {"ipo_count": 1, "ipo_year": 1973} {"ipo_count": 2, "ipo_year": 1980}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"_count": "asc"
}
],
"size": 2
},
"aggs": {}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 2,
"aggregations": {
"ipo_year": {
"buckets": [
{
"key": 1973,
"doc_count": 1
},
{
"key": 1980,
"doc_count": 2
}
],
"sum_other_doc_count": 2895,
"doc_count_error_upper_bound": -1
}
},
"timed_out": false
}
ORDER BY 指标
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year, MAX(market_cap) AS max_market_cap FROM symbol GROUP BY ipo_year ORDER BY max_market_cap LIMIT 2 EOF {"max_market_cap": 826830000.0, "ipo_year": 1982} {"max_market_cap": 847180000.0, "ipo_year": 2016}
Elasticsearch
{
"aggs": {
"ipo_year": {
"terms": {
"field": "ipo_year",
"order": [
{
"max_market_cap": "asc"
}
],
"size": 2
},
"aggs": {
"max_market_cap": {
"max": {
"field": "market_cap"
}
}
}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 20,
"aggregations": {
"ipo_year": {
"buckets": [
{
"max_market_cap": {
"value": 826830000.0
},
"key": 1982,
"doc_count": 4
},
{
"max_market_cap": {
"value": 847180000.0
},
"key": 2016,
"doc_count": 6
}
],
"sum_other_doc_count": 2888,
"doc_count_error_upper_bound": -1
}
},
"timed_out": false
}
HISTOGRAM 和 ORDER BY
除了 terms aggregation,其他 aggregation 也支持 order by 但是并不完善。比如 histogram aggregation 支持 sort 但是并不支持 size (也就是可以ORDER BY 但是不能 LIMIT)。官方有计划增加一个通用的支持 LIMIT 的方式,不过还没有实现:https://github.com/elastic/elasticsearch/issues/14928
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year_range, MAX(market_cap) AS max_market_cap FROM symbol GROUP BY histogram(ipo_year, 10) AS ipo_year_range ORDER BY ipo_year_range EOF {"ipo_year_range": 1970, "max_market_cap": 18370000000.0} {"ipo_year_range": 1980, "max_market_cap": 522690000000.0} {"ipo_year_range": 1990, "max_market_cap": 230940000000.0} {"ipo_year_range": 2000, "max_market_cap": 470490000000.0} {"ipo_year_range": 2010, "max_market_cap": 287470000000.0}
Elasticsearch
{
"aggs": {
"ipo_year_range": {
"aggs": {
"max_market_cap": {
"max": {
"field": "market_cap"
}
}
},
"histogram": {
"field": "ipo_year",
"interval": 10,
"order": {
"_key": "asc"
}
}
}
},
"size": 0
}
{
"hits": {
"hits": [],
"total": 6714,
"max_score": 0.0
},
"_shards": {
"successful": 1,
"failed": 0,
"total": 1
},
"took": 2,
"aggregations": {
"ipo_year_range": {
"buckets": [
{
"max_market_cap": {
"value": 18370000000.0
},
"key": 1970,
"doc_count": 5
},
{
"max_market_cap": {
"value": 522690000000.0
},
"key": 1980,
"doc_count": 155
},
{
"max_market_cap": {
"value": 230940000000.0
},
"key": 1990,
"doc_count": 598
},
{
"max_market_cap": {
"value": 470490000000.0
},
"key": 2000,
"doc_count": 745
},
{
"max_market_cap": {
"value": 287470000000.0
},
"key": 2010,
"doc_count": 1395
}
]
}
},
"timed_out": false
}
以上是关于把 Elasticsearch 当数据库使:聚合后排序的主要内容,如果未能解决你的问题,请参考以下文章