最大流模板(Dinic)

Posted martinue

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最大流模板(Dinic)相关的知识,希望对你有一定的参考价值。


最大流模板:


#include<stdio.h>
#include<iostream>
using   namespace std;
const   int oo=1e9;
/**oo 表示无穷大*/
const  int mm=111111111;
/**mm 表示边的最大数量,记住要是原图的两倍,在加边的时候都是双向的*/
const  int mn=999;
/**mn 表示点的最大数量*/
int node,src,dest,edge;
/**node 表示节点数,src 表示源点,dest 表示汇点,edge 统计边数*/
int ver[mm],flow[mm],next[mm];
/**ver 边指向的节点,flow 边的容量 ,next 链表的下一条边*/
int head[mn],work[mn],dis[mn],q[mn];
void prepare(int _node, int _src,int _dest)
{
    node=_node,src=_src,dest=_dest;
    for(int i=0; i<node; ++i)head[i]=-1;
    edge=0;
}
/**增加一条 u 到 v 容量为 c 的边*/
void addedge( int u,  int v,  int c)
{
    ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
/**广搜计算出每个点与源点的最短距离,如果不能到达汇点说明算法结束*/
bool Dinic_bfs()
{
    int i,u,v,l,r=0;
    for(i=0; i<node; ++i)dis[i]=-1;
    dis[q[r++]=src]=0;
    for(l=0; l<r; ++l)
        for(i=head[u=q[l]]; i>=0; i=next[i])
            if(flow[i]&&dis[v=ver[i]]<0)
            {
                /**这条边必须有剩余容量*/
                dis[q[r++]=v]=dis[u]+1;
                if(v==dest)  return 1;
            }
    return 0;
}
/**寻找可行流的增广路算法,按节点的距离来找,加快速度*/
int Dinic_dfs(  int u, int exp)
{
    if(u==dest)  return exp;
    /**work 是临时链表头,这里用 i 引用它,这样寻找过的边不再寻找*/
    for(  int &i=work[u],v,tmp; i>=0; i=next[i])
        if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
        {
            flow[i]-=tmp;
            flow[i^1]+=tmp;
            /**正反向边容量改变*/
            return tmp;
        }
    return 0;
}

int Dinic_flow()
{
    int i,ret=0,delta;
    while(Dinic_bfs())
    {
        for(i=0; i<node; ++i)work[i]=head[i];
        while(delta=Dinic_dfs(src,oo))ret+=delta;
    }
    return ret;
}

以上是关于最大流模板(Dinic)的主要内容,如果未能解决你的问题,请参考以下文章

P3376 网络流-最大流模板题(Dinic+当前弧优化)

最大流模板(Dinic)

网络流-最大流 Dinic模板

二分图最大匹配模板匈牙利;Dinic最大流

模板dinic算法网络最大流

网络最大流dinic模板