进程描述符task_struct

Posted 请叫我小小兽

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了进程描述符task_struct相关的知识,希望对你有一定的参考价值。

    1、进程状态 

[cpp] view plain copy
 
  1. volatile long state;  
  2. int exit_state;  

    state成员的可能取值如下: 

[cpp] view plain copy
 
  1. #define TASK_RUNNING        0  
  2. #define TASK_INTERRUPTIBLE  1  
  3. #define TASK_UNINTERRUPTIBLE    2  
  4. #define __TASK_STOPPED      4  
  5. #define __TASK_TRACED       8  
  6. /* in tsk->exit_state */  
  7. #define EXIT_ZOMBIE     16  
  8. #define EXIT_DEAD       32  
  9. /* in tsk->state again */  
  10. #define TASK_DEAD       64  
  11. #define TASK_WAKEKILL       128  
  12. #define TASK_WAKING     256  

    系统中的每个进程都必然处于以上所列进程状态中的一种。

    TASK_RUNNING表示进程要么正在执行,要么正要准备执行。

    TASK_INTERRUPTIBLE表示进程被阻塞(睡眠),直到某个条件变为真。条件一旦达成,进程的状态就被设置为TASK_RUNNING。

    TASK_UNINTERRUPTIBLE的意义与TASK_INTERRUPTIBLE类似,除了不能通过接受一个信号来唤醒以外。

    __TASK_STOPPED表示进程被停止执行。

    __TASK_TRACED表示进程被debugger等进程监视。

    EXIT_ZOMBIE表示进程的执行被终止,但是其父进程还没有使用wait()等系统调用来获知它的终止信息。

    EXIT_DEAD表示进程的最终状态。

    EXIT_ZOMBIE和EXIT_DEAD也可以存放在exit_state成员中。 

    2、进程标识符(PID) 

[cpp] view plain copy
 
  1. pid_t pid;  
  2. pid_t tgid;  

    在CONFIG_BASE_SMALL配置为0的情况下,PID的取值范围是0到32767,即系统中的进程数最大为32768个。 

[cpp] view plain copy
 
  1. /* linux-2.6.38.8/include/linux/threads.h */  
  2. #define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000)  

    在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值。

    3、进程内核栈 

[cpp] view plain copy
 
  1. void *stack;  

    进程通过alloc_thread_info函数分配它的内核栈,通过free_thread_info函数释放所分配的内核栈。 

[cpp] view plain copy
 
  1. /* linux-2.6.38.8/kernel/fork.c */   
  2. static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)  
  3. {  
  4. #ifdef CONFIG_DEBUG_STACK_USAGE  
  5.     gfp_t mask = GFP_KERNEL | __GFP_ZERO;  
  6. #else  
  7.     gfp_t mask = GFP_KERNEL;  
  8. #endif  
  9.     return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);  
  10. }  
  11. static inline void free_thread_info(struct thread_info *ti)  
  12. {  
  13.     free_pages((unsigned long)ti, THREAD_SIZE_ORDER);  
  14. }  

    其中,THREAD_SIZE_ORDER宏在linux-2.6.38.8/arch/arm/include/asm/thread_info.h文件中被定义为1,也就是说alloc_thread_info函数通过调用__get_free_pages函数分配2个页的内存(它的首地址是8192 字节对齐的)。

    Linux内核通过thread_union联合体来表示进程的内核栈,其中THREAD_SIZE宏的大小为8192。 

  1. union thread_union {  
  2.     struct thread_info thread_info;  
  3.     unsigned long stack[THREAD_SIZE/sizeof(long)];  
  4. };  

    当进程从用户态切换到内核态时,进程的内核栈总是空的,所以ARM的sp寄存器指向这个栈的顶端。因此,内核能够轻易地通过sp寄存器获得当前正在CPU上运行的进程。 

[cpp] view plain copy
 
  1. /* linux-2.6.38.8/arch/arm/include/asm/current.h */  
  2. static inline struct task_struct *get_current(void)  
  3. {  
  4.     return current_thread_info()->task;  
  5. }  
  6.   
  7. #define current (get_current())  
  8.   
  9. /* linux-2.6.38.8/arch/arm/include/asm/thread_info.h */   
  10. static inline struct thread_info *current_thread_info(void)  
  11. {  
  12.     register unsigned long sp asm ("sp");  
  13.     return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));  
  14. }  

    4、标记 

[cpp] view plain copy
 
  1. unsigned int flags; /* per process flags, defined below */  

    flags成员的可能取值如下: 

[cpp] view plain copy
 
  1. #define PF_KSOFTIRQD    0x00000001  /* I am ksoftirqd */  
  2. #define PF_STARTING 0x00000002  /* being created */  
  3. #define PF_EXITING  0x00000004  /* getting shut down */  
  4. #define PF_EXITPIDONE   0x00000008  /* pi exit done on shut down */  
  5. #define PF_VCPU     0x00000010  /* I‘m a virtual CPU */  
  6. #define PF_WQ_WORKER    0x00000020  /* I‘m a workqueue worker */  
  7. #define PF_FORKNOEXEC   0x00000040  /* forked but didn‘t exec */  
  8. #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */  
  9. #define PF_SUPERPRIV    0x00000100  /* used super-user privileges */  
  10. #define PF_DUMPCORE 0x00000200  /* dumped core */  
  11. #define PF_SIGNALED 0x00000400  /* killed by a signal */  
  12. #define PF_MEMALLOC 0x00000800  /* Allocating memory */  
  13. #define PF_USED_MATH    0x00002000  /* if unset the fpu must be initialized before use */  
  14. #define PF_FREEZING 0x00004000  /* freeze in progress. do not account to load */  
  15. #define PF_NOFREEZE 0x00008000  /* this thread should not be frozen */  
  16. #define PF_FROZEN   0x00010000  /* frozen for system suspend */  
  17. #define PF_FSTRANS  0x00020000  /* inside a filesystem transaction */  
  18. #define PF_KSWAPD   0x00040000  /* I am kswapd */  
  19. #define PF_OOM_ORIGIN   0x00080000  /* Allocating much memory to others */  
  20. #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */  
  21. #define PF_KTHREAD  0x00200000  /* I am a kernel thread */  
  22. #define PF_RANDOMIZE    0x00400000  /* randomize virtual address space */  
  23. #define PF_SWAPWRITE    0x00800000  /* Allowed to write to swap */  
  24. #define PF_SPREAD_PAGE  0x01000000  /* Spread page cache over cpuset */  
  25. #define PF_SPREAD_SLAB  0x02000000  /* Spread some slab caches over cpuset */  
  26. #define PF_THREAD_BOUND 0x04000000  /* Thread bound to specific cpu */  
  27. #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */  
  28. #define PF_MEMPOLICY    0x10000000  /* Non-default NUMA mempolicy */  
  29. #define PF_MUTEX_TESTER 0x20000000  /* Thread belongs to the rt mutex tester */  
  30. #define PF_FREEZER_SKIP 0x40000000  /* Freezer should not count it as freezable */  
  31. #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won‘t send signals to it */  

    5、表示进程亲属关系的成员 

[cpp] view plain copy
 
  1. struct task_struct *real_parent; /* real parent process */  
  2. struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */  
  3. struct list_head children;  /* list of my children */  
  4. struct list_head sibling;   /* linkage in my parent‘s children list */  
  5. struct task_struct *group_leader;   /* threadgroup leader */  

    在Linux系统中,所有进程之间都有着直接或间接地联系,每个进程都有其父进程,也可能有零个或多个子进程。拥有同一父进程的所有进程具有兄弟关系。

    real_parent指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程。

    parent指向其父进程,当它终止时,必须向它的父进程发送信号。它的值通常与real_parent相同。

    children表示链表的头部,链表中的所有元素都是它的子进程。

    sibling用于把当前进程插入到兄弟链表中。

    group_leader指向其所在进程组的领头进程。

    6、ptrace系统调用 

[cpp] view plain copy
 
  1. unsigned int ptrace;  
  2. struct list_head ptraced;  
  3. struct list_head ptrace_entry;  
  4. unsigned long ptrace_message;  
  5. siginfo_t *last_siginfo; /* For ptrace use.  */  
  6. ifdef CONFIG_HAVE_HW_BREAKPOINT  
  7. atomic_t ptrace_bp_refcnt;  
  8. endif  

    成员ptrace被设置为0时表示不需要被跟踪,它的可能取值如下: 

[cpp] view plain copy
 
  1. /* linux-2.6.38.8/include/linux/ptrace.h */  
  2. #define PT_PTRACED  0x00000001  
  3. #define PT_DTRACE   0x00000002  /* delayed trace (used on m68k, i386) */  
  4. #define PT_TRACESYSGOOD 0x00000004  
  5. #define PT_PTRACE_CAP   0x00000008  /* ptracer can follow suid-exec */  
  6. #define PT_TRACE_FORK   0x00000010  
  7. #define PT_TRACE_VFORK  0x00000020  
  8. #define PT_TRACE_CLONE  0x00000040  
  9. #define PT_TRACE_EXEC   0x00000080  
  10. #define PT_TRACE_VFORK_DONE 0x00000100  
  11. #define PT_TRACE_EXIT   0x00000200  

    7、Performance Event 

[cpp] view plain copy
 
  1. #ifdef CONFIG_PERF_EVENTS  
  2.     struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];  
  3.     struct mutex perf_event_mutex;  
  4.     struct list_head perf_event_list;  
  5. #endif  

    Performance Event是一款随 Linux 内核代码一同发布和维护的性能诊断工具。这些成员用于帮助PerformanceEvent分析进程的性能问题。

       8、进程调度 

[cpp] view plain copy
 
  1. int prio, static_prio, normal_prio;  
  2. unsigned int rt_priority;  
  3. const struct sched_class *sched_class;  
  4. struct sched_entity se;  
  5. struct sched_rt_entity rt;  
  6. unsigned int policy;  
  7. cpumask_t cpus_allowed;  

    实时优先级范围是0到MAX_RT_PRIO-1(即99),而普通进程的静态优先级范围是从MAX_RT_PRIO到MAX_PRIO-1(即100到139)。值越大静态优先级越低。 

  1. /* linux-2.6.38.8/include/linux/sched.h */  
  2. #define MAX_USER_RT_PRIO    100  
  3. #define MAX_RT_PRIO     MAX_USER_RT_PRIO  
  4.   
  5. #define MAX_PRIO        (MAX_RT_PRIO + 40)  
  6. #define DEFAULT_PRIO        (MAX_RT_PRIO + 20)  

    static_prio用于保存静态优先级,可以通过nice系统调用来进行修改。

    rt_priority用于保存实时优先级。

    normal_prio的值取决于静态优先级和调度策略。

    prio用于保存动态优先级。

    policy表示进程的调度策略,目前主要有以下五种: 

  1. #define SCHED_NORMAL        0  
  2. #define SCHED_FIFO      1  
  3. #define SCHED_RR        2  
  4. #define SCHED_BATCH     3  
  5. /* SCHED_ISO: reserved but not implemented yet */  
  6. #define SCHED_IDLE      5  

    SCHED_NORMAL用于普通进程,通过CFS调度器实现。SCHED_BATCH用于非交互的处理器消耗型进程。SCHED_IDLE是在系统负载很低时使用。

    SCHED_FIFO(先入先出调度算法)和SCHED_RR(轮流调度算法)都是实时调度策略。

    sched_class结构体表示调度类,目前内核中有实现以下四种: 

  1. /* linux-2.6.38.8/kernel/sched_fair.c */   
  2. static const struct sched_class fair_sched_class;  
  3. /* linux-2.6.38.8/kernel/sched_rt.c */  
  4. static const struct sched_class rt_sched_class;  
  5. /* linux-2.6.38.8/kernel/sched_idletask.c */  
  6. static const struct sched_class idle_sched_class;  
  7. /* linux-2.6.38.8/kernel/sched_stoptask.c */  
  8. static const struct sched_class stop_sched_class;  

    se和rt都是调用实体,一个用于普通进程,一个用于实时进程,每个进程都有其中之一的实体。

    cpus_allowed用于控制进程可以在哪里处理器上运行。

9、进程地址空间 

[cpp] view plain copy
 
  1.     struct mm_struct *mm, *active_mm;  
  2. #ifdef CONFIG_COMPAT_BRK  
  3.     unsigned brk_randomized:1;  
  4. #endif  
  5. #if defined(SPLIT_RSS_COUNTING)  
  6.     struct task_rss_stat    rss_stat;  
  7. #endif  

    mm指向进程所拥有的内存描述符,而active_mm指向进程运行时所使用的内存描述符。对于普通进程而言,这两个指针变量的值相同。但是,内核线程不拥有任何内存描述符,所以它们的mm成员总是为NULL。当内核线程得以运行时,它的active_mm成员被初始化为前一个运行进程的 active_mm值。

      rss_stat用来记录缓冲信息。 

    10、判断标志 

[cpp] view plain copy
 
  1. int exit_code, exit_signal;  
  2. int pdeath_signal;  /*  The signal sent when the parent dies  */  
  3. /* ??? */  
  4. unsigned int personality;  
  5. unsigned did_exec:1;  
  6. unsigned in_execve:1;   /* Tell the LSMs that the process is doing an 
  7.              * execve */  
  8. unsigned in_iowait:1;  
  9.   
  10.   
  11. /* Revert to default priority/policy when forking */  
  12. unsigned sched_reset_on_fork:1;  

    exit_code用于设置进程的终止代号,这个值要么是_exit()或exit_group()系统调用参数(正常终止),要么是由内核提供的一个错误代号(异常终止)。

    exit_signal被置为-1时表示是某个线程组中的一员。只有当线程组的最后一个成员终止时,才会产生一个信号,以通知线程组的领头进程的父进程。

    pdeath_signal用于判断父进程终止时发送信号。

    personality用于处理不同的ABI,它的可能取值如下: 

[cpp] view plain copy
 
  1. enum {  
  2.     PER_LINUX =     0x0000,  
  3.     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,  
  4.     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,  
  5.     PER_SVR4 =      0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
  6.     PER_SVR3 =      0x0002 | STICKY_TIMEOUTS | SHORT_INODE,  
  7.     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS |  
  8.                      WHOLE_SECONDS | SHORT_INODE,  
  9.     PER_OSR5 =      0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,  
  10.     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,  
  11.     PER_ISCR4 =     0x0005 | STICKY_TIMEOUTS,  
  12.     PER_BSD =       0x0006,  
  13.     PER_SUNOS =     0x0006 | STICKY_TIMEOUTS,  
  14.     PER_XENIX =     0x0007 | STICKY_TIMEOUTS | SHORT_INODE,  
  15.     PER_LINUX32 =       0x0008,  
  16.     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,  
  17.     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */  
  18.     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */  
  19.     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */  
  20.     PER_RISCOS =        0x000c,  
  21.     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,  
  22.     PER_UW7 =       0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
  23.     PER_OSF4 =      0x000f,          /* OSF/1 v4 */  
  24.     PER_HPUX =      0x0010,  
  25.     PER_MASK =      0x00ff,  
  26. };  

    did_exec用于记录进程代码是否被execve()函数所执行。

    in_iowait用于判断是否进行iowait计数。

    sched_reset_on_fork用于判断是否恢复默认的优先级或调度策略。

    11、时间 

[cpp] view plain copy
 
  1.     cputime_t utime, stime, utimescaled, stimescaled;  
  2.     cputime_t gtime;  
  3. #ifndef CONFIG_VIRT_CPU_ACCOUNTING  
  4.     cputime_t prev_utime, prev_stime;  
  5. #endif  
  6.     unsigned long nvcsw, nivcsw; /* context switch counts */  
  7.     struct timespec start_time;         /* monotonic time */  
  8.     struct timespec real_start_time;    /* boot based time */  
  9.     struct task_cputime cputime_expires;  
  10.     struct list_head cpu_timers[3];  
  11. #ifdef CONFIG_DETECT_HUNG_TASK  
  12. /* hung task detection */  
  13.     unsigned long last_switch_count;  
  14. #endif  

    utime/stime用于记录进程在用户态/内核态下所经过的节拍数(定时器)

    utimescaled/stimescaled也是用于记录进程在用户态/内核态的运行时间,但它们以处理器的频率为刻度。

    gtime是以节拍计数的虚拟机运行时间(guest time)。

    nvcsw/nivcsw是自愿(voluntary)/非自愿(involuntary)上下文切换计数。last_switch_count是nvcsw和nivcsw的总和。

    start_time和real_start_time都是进程创建时间,real_start_time还包含了进程睡眠时间,常用于/proc/pid/stat,

    cputime_expires用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表。

    12、信号处理 

[cpp] view plain copy
 
  1. /* signal handlers */  
  2.     struct signal_struct *signal;  
  3.     struct sighand_struct *sighand;  
  4.   
  5.     sigset_t blocked, real_blocked;  
  6.     sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */  
  7.     struct sigpending pending;  
  8.   
  9.     unsigned long sas_ss_sp;  
  10.     size_t sas_ss_size;  
  11.     int (*notifier)(void *priv);  
  12.     void *notifier_data;  
  13.     sigset_t *notifier_mask;  

    signal指向进程的信号描述符。

    sighand指向进程的信号处理程序描述符。

    blocked表示被阻塞信号的掩码,real_blocked表示临时掩码。

    pending存放私有挂起信号的数据结构

    sas_ss_sp是信号处理程序备用堆栈的地址,sas_ss_size表示堆栈的大小。

    设备驱动程序常用notifier指向的函数来阻塞进程的某些信号(notifier_mask是这些信号的位掩码),notifier_data指的是notifier所指向的函数可能使用的数据。

    13、其他

    (1)、用于保护资源分配或释放的自旋锁 

[cpp] view plain copy
 
  1. /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 
  2.  * mempolicy */  
  3.     spinlock_t alloc_lock;  

    (2)、进程描述符使用计数,被置为2时,表示进程描述符正在被使用而且其相应的进程处于活动状态。 

[cpp] view plain copy
 
  1. atomic_t usage;  

    (3)、用于表示获取大内核锁的次数,如果进程未获得过锁,则置为-1。 

[cpp] view plain copy
 
  1. int lock_depth;     /* BKL lock depth */  

    (4)、在SMP上帮助实现无加锁的进程切换(unlocked context switches) 

[cpp] view plain copy
 
  1. #ifdef CONFIG_SMP  
  2. #ifdef __ARCH_WANT_UNLOCKED_CTXSW  
  3.     int oncpu;  
  4. #endif  
  5. #endif  

    (5)、preempt_notifier结构体链表 

[cpp] view plain copy
 
  1. #ifdef CONFIG_PREEMPT_NOTIFIERS  
  2.     /* list of struct preempt_notifier: */  
  3.     struct hlist_head preempt_notifiers;  
  4. #endif  

    (6)、FPU使用计数 

[cpp] view plain copy
 
  1. unsigned char fpu_counter;  

    (7)、blktrace是一个针对Linux内核中块设备I/O层的跟踪工具。 

[cpp] view plain copy
 
  1. #ifdef CONFIG_BLK_DEV_IO_TRACE  
  2.     unsigned int btrace_seq;  
  3. #endif  

    (8)、RCU同步原语 

[cpp] view plain copy
 
  1. #ifdef CONFIG_PREEMPT_RCU  
  2.     int rcu_read_lock_nesting;  
  3.     char rcu_read_unlock_special;  
  4.     struct list_head rcu_node_entry;  
  5. #endif /* #ifdef CONFIG_PREEMPT_RCU */  
  6. #ifdef CONFIG_TREE_PREEMPT_RCU  
  7.     struct rcu_node *rcu_blocked_node;  
  8. #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */  
  9. #ifdef CONFIG_RCU_BOOST  
  10.     struct rt_mutex *rcu_boost_mutex;  
  11. #endif /* #ifdef CONFIG_RCU_BOOST */  

    (9)、用于调度器统计进程的运行信息 

[cpp] view plain copy
 
  1. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)  
  2.     struct sched_info sched_info;  
  3. #endif  

    (10)、用于构建进程链表 

[cpp] view plain copy
 
  1. struct list_head tasks;  

    (11)、to limit pushing to one attempt