boost库之多线程高级特性

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了boost库之多线程高级特性相关的知识,希望对你有一定的参考价值。

(十二)boost库之多线程高级特性

    很多时候,线程不仅仅是执行一些耗时操作,可能我们还需要得到线程的返回值,一般的处理方法就是定义一个全局状态变量,不断轮训状态,就如我目前维护的一个项目,全局变量定义了N中状态,看的让人抓狂。该项目的大体逻辑是这样的,启动K个线程,当线程执行到某一个点时,进行轮训,判断是否所有线程都执行到该点,单独开启了一个线程用于轮训所有线程是否结束,待所有线程结束后会获取数据,生成一个文件,另外还有一个线程就在轮训文件是否生成,然后读取文件进行下一步操作。各种的轮训,显得非常的笨拙。利用boost库,我们来看看这么解决这些同步问题。

1、获取线程结果

    boost::packaged_task 包装一个可调用的对象,并且允许异步获取该可调用对象产生的结果

    unique_future 用于保存异步计算得到的结果

void GetFutures()
{
    boost::packaged_task<int> pt(boost::bind(Fibonacci, 10));
    boost::unique_future<int> uf = pt.get_future();
    //启动线程,必须使用move,packaged_task是不可拷贝的
    boost::thread th(boost::move(pt));
    uf.wait();
    int nVal = uf.get();
    cout << "Fibonacci " << nVal << endl;
}

uf.wait等待线程结束,当然future类也提供了很多种等待函数,如timed_wait等待一段时间。

当然,我们更多的时候是等待一组线程的结束,这是可以用wait_for_all等待所有future对象,wait_for_any 等待任意一个对象接收。

void GetFutures()
{
    boost::packaged_task<int> pt1(boost::bind(Fibonacci, 10));
    boost::packaged_task<int> pt2(boost::bind(Fibonacci, 20));
    boost::unique_future<int> uf1 = pt1.get_future();
    boost::unique_future<int> uf2 = pt2.get_future();
    boost::thread(boost::move(pt1));
    boost::thread(boost::move(pt2));
    boost::wait_for_all(uf1, uf2);
    cout << "Fibonacci " << uf1.get() << " ," << uf2.get() << endl;
}

2、护栏barrier

护栏就是说要等待所有的线程到达同一个点,才继续往下执行。

boost::barrier br(3);
void BarrierFunc()
{
    cout << "begin" << endl;
    br.wait();
    cout << "end " << endl;
}

void TestBarrier()
{
    boost::thread_group grp;
    grp.create_thread(BarrierFunc);
    grp.create_thread(BarrierFunc);
    grp.create_thread(BarrierFunc);
    grp.join_all();
}

 

3、线程本地存储

程序中使用全局变量或局部静态变量,这是非常常见的,但这样的函数对多线程程序来说,很难保证程序的正确性,这时我们希望,这些全局变量和局部静态变量,是线程独立拥有的,多个线程之间不会造成干扰,那么使用thread_specific_ptr就能轻松解决。

int Add(int n)
{
    static boost::thread_specific_ptr<int> sp;  //该变量是线程独立拥有的
    if (!sp.get())
    {
        sp.reset(new int(0));
    }
    *sp = n + *sp;
    return *sp;
}

void  Sum()
{
    cout <<  Add(5) + Add(10) << endl;           //得到的结果20
}

void ThreadSum()
{
    boost::thread_group threads;    
    for (int i=0; i<5; ++i)
        threads.create_thread(&Sum);             //所有线程输出的结果是一样的
    threads.join_all();
}

 

以上是关于boost库之多线程高级特性的主要内容,如果未能解决你的问题,请参考以下文章

boost库之多线程间通信

Boost库之asio io_service以及runrun_onepollpoll_one区别

python高级之多线程

java高级之多线程

Python学习笔记18:标准库之多进程(multiprocessing包)

boost库之日期时间