Linux 内核使用的 GNU C 扩展

Posted zengkefu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux 内核使用的 GNU C 扩展相关的知识,希望对你有一定的参考价值。

 gcc核心扩展linuxforum(转)=========================== 
Linux 内核使用的 GNU C 扩展 
=========================== 

GNC CC 是一个功能非常强大的跨平台 C 编译器,它对 C 语言提供了很多扩展, 
这些扩展对优化、目标代码布局、更安全的检查等方面提供了很强的支持。本文把 
支持 GNU 扩展的 C 语言称为 GNU C。 

Linux 内核代码使用了大量的 GNU C 扩展,以至于能够编译 Linux 内核的唯一编 
译器是 GNU CC,以前甚至出现过编译 Linux 内核要使用特殊的 GNU CC 版本的情 
况。本文是对 Linux 内核使用的 GNU C 扩展的一个汇总,希望当你读内核源码遇 
到不理解的语法和语义时,能从本文找到一个初步的解答,更详细的信息可以查看 
gcc.info。文中的例子取自 Linux 2.4.18。 


语句表达式 
========== 

GNU C 把包含在括号中的复合语句看做是一个表达式,称为语句表达式,它可以出 
现在任何允许表达式的地方,你可以在语句表达式中使用循环、局部变量等,原本 
只能在复合语句中使用。例如: 

++++ include/linux/kernel.h 
159: #define min_t(type,x,y) 
160: ({ type __x = (x); type __y = (y); __x < __y ? __x: __y; }) 
++++ net/ipv4/tcp_output.c 
654: int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 

复合语句的最后一个语句应该是一个表达式,它的值将成为这个语句表达式的值。 
这里定义了一个安全的求最小值的宏,在标准 C 中,通常定义为: 

#define min(x,y) ((x) < (y) ? (x) : (y)) 

这个定义计算 x 和 y 分别两次,当参数有副作用时,将产生不正确的结果,使用 
语句表达式只计算参数一次,避免了可能的错误。语句表达式通常用于宏定义。 


Typeof 
====== 

使用前一节定义的宏需要知道参数的类型,利用 typeof 可以定义更通用的宏,不 
必事先知道参数的类型,例如: 

++++ include/linux/kernel.h 
141: #define min(x,y) ({ 
142: const typeof(x) _x = (x); 
143: const typeof(y) _y = (y); 
144: (void) (&_x == &_y); 
145: _x < _y ? _x : _y; }) 

这里 typeof(x) 表示 x 的值类型,第 142 行定义了一个与 x 类型相同的局部变 
量 _x 并初使化为 x,注意第 144 行的作用是检查参数 x 和 y 的类型是否相同。 
typeof 可以用在任何类型可以使用的地方,通常用于宏定义。 


零长度数组 
========== 

GNU C 允许使用零长度数组,在定义变长对象的头结构时,这个特性非常有用。例 
如: 

++++ include/linux/minix_fs.h 
85: struct minix_dir_entry { 
86: __u16 inode; 
87: char name[0]; 
88: }; 

结构的最后一个元素定义为零长度数组,它不占结构的空间。在标准 C 中则需要 
定义数组长度为 1,分配时计算对象大小比较复杂。 


可变参数宏 
========== 

在 GNU C 中,宏可以接受可变数目的参数,就象函数一样,例如: 

++++ include/linux/kernel.h 
110: #define pr_debug(fmt,arg...) 
111: printk(KERN_DEBUG fmt,##arg) 

这里 arg 表示其余的参数,可以是零个或多个,这些参数以及参数之间的逗号构 
成 arg 的值,在宏扩展时替换 arg,例如: 

pr_debug("%s:%d",filename,line) 

扩展为 

printk("<7>" "%s:%d", filename, line) 

使用 ## 的原因是处理 arg 不匹配任何参数的情况,这时 arg 的值为空,GNU 
C 预处理器在这种特殊情况下,丢弃 ## 之前的逗号,这样 

pr_debug("success! ") 

扩展为 

printk("<7>" "success! ") 

注意最后没有逗号。 


标号元素 
======== 

标准 C 要求数组或结构变量的初使化值必须以固定的顺序出现,在 GNU C 中,通 
过指定索引或结构域名,允许初始化值以任意顺序出现。指定数组索引的方法是在 
初始化值前写 [INDEX] =,要指定一个范围使用 [FIRST ... LAST] = 的形式, 
例如: 

+++++ arch/i386/kernel/irq.c 
1079: static unsigned long irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL }; 

将数组的所有元素初使化为 ~0UL,这可以看做是一种简写形式。 

要指定结构元素,在元素值前写 FIELDNAME:,例如: 

++++ fs/ext2/file.c 
41: struct file_operations ext2_file_operations = { 
42: llseek: generic_file_llseek, 
43: read: generic_file_read, 
44: write: generic_file_write, 
45: ioctl: ext2_ioctl, 
46: mmap: generic_file_mmap, 
47: open: generic_file_open, 
48: release: ext2_release_file, 
49: fsync: ext2_sync_file, 
50 }; 

将结构 ext2_file_operations 的元素 llseek 初始化为 generic_file_llseek, 
元素 read 初始化为 genenric_file_read,依次类推。我觉得这是 GNU C 扩展中 
最好的特性之一,当结构的定义变化以至元素的偏移改变时,这种初始化方法仍然 
保证已知元素的正确性。对于未出现在初始化中的元素,其初值为 0。 


Case 范围 
========= 

GNU C 允许在一个 case 标号中指定一个连续范围的值,例如: 

++++ arch/i386/kernel/irq.c 
1062: case 0 ... 9: c -= 0; break; 
1063: case a ... f: c -= a-10; break; 
1064: case A ... F: c -= A-10; break; 

case 0 ... 9: 

相当于 

case 0: case 1: case 2: case 3: case 4: 
case 5: case 6: case 7: case 8: case 9: 


声明的特殊属性 
============== 

GNU C 允许声明函数、变量和类型的特殊属性,以便手工的代码优化和更仔细的代 
码检查。要指定一个声明的属性,在声明后写 

__attribute__ (( ATTRIBUTE )) 

其中 ATTRIBUTE 是属性说明,多个属性以逗号分隔。GNU C 支持十几个属性,这 
里介绍最常用的: 

* noreturn 

属性 noreturn 用于函数,表示该函数从不返回。这可以让编译器生成稍微优化的 
代码,最重要的是可以消除不必要的警告信息比如未初使化的变量。例如: 

++++ include/linux/kernel.h 
47: # define ATTRIB_NORET __attribute__((noreturn)) .... 
61: asmlinkage NORET_TYPE void do_exit(long error_code) 
ATTRIB_NORET; 

* format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK) 

属性 format 用于函数,表示该函数使用 printf, scanf 或 strftime 风格的参 
数,使用这类函数最容易犯的错误是格式串与参数不匹配,指定 format 属性可以 
让编译器根据格式串检查参数类型。例如: 

++++ include/linux/kernel.h? 
89: asmlinkage int printk(const char * fmt, ...) 
90: __attribute__ ((format (printf, 1, 2))); 

表示第一个参数是格式串,从第二个参数起根据格式串检查参数。 

* unused 

属性 unused 用于函数和变量,表示该函数或变量可能不使用,这个属性可以避免 
编译器产生警告信息。 

* section ("section-name") 

属性 section 用于函数和变量,通常编译器将函数放在 .text 节,变量放在 
.data 或 .bss 节,使用 section 属性,可以让编译器将函数或变量放在指定的 
节中。例如: 

++++ include/linux/init.h 
78: #define __init __attribute__ ((__section__ (".text.init"))) 
79: #define __exit __attribute__ ((unused, __section__(".text.exit"))) 
80: #define __initdata __attribute__ ((__section__ (".data.init"))) 
81: #define __exitdata __attribute__ ((unused, __section__ (".data.exit"))) 
82: #define __initsetup __attribute__ ((unused,__section__ (".setup.init"))) 
83: #define __init_call __attribute__ ((unused,__section__ (".initcall.init"))) 
84: #define __exit_call __attribute__ ((unused,__section__ (".exitcall.exit"))) 

连接器可以把相同节的代码或数据安排在一起,Linux 内核很喜欢使用这种技术, 
例如系统的初始化代码被安排在单独的一个节,在初始化结束后就可以释放这部分 
内存。 

* aligned (ALIGNMENT) 

属性 aligned 用于变量、结构或联合类型,指定变量、结构域、结构或联合的对 
齐量,以字节为单位,例如: 

++++ include/asm-i386/processor.h 
294: struct i387_fxsave_struct { 
295: unsigned short cwd; 
296: unsigned short swd; 
297: unsigned short twd; 
298: unsigned short fop; 
299: long fip; 
300: long fcs; 
301: long foo; 
...... 
308: } __attribute__ ((aligned (16))); 

表示该结构类型的变量以 16 字节对齐。通常编译器会选择合适的对齐量,显示指 
定对齐通常是由于体系限制、优化等原因。 

* packed 

属性 packed 用于变量和类型,用于变量或结构域时表示使用最小可能的对齐,用 
于枚举、结构或联合类型时表示该类型使用最小的内存。例如: 

++++ include/asm-i386/desc.h 
51: struct Xgt_desc_struct { 
52: unsigned short size; 
53: unsigned long address __attribute__((packed)); 
54: }; 

域 address 将紧接着 size 分配。属性 packed 的用途大多是定义硬件相关的结 
构,使元素之间没有因对齐而造成的空洞。 


当前函数名 
========== 

GNU CC 预定义了两个标志符保存当前函数的名字,__FUNCTION__ 保存函数在源码 
中的名字,__PRETTY_FUNCTION__ 保存带语言特色的名字。在 C 函数中,这两个 
名字是相同的,在 C++ 函数中,__PRETTY_FUNCTION__ 包括函数返回类型等额外 
信息,Linux 内核只使用了 __FUNCTION__。 

++++ fs/ext2/super.c 
98: void ext2_update_dynamic_rev(struct super_block *sb) 
99: { 
100: struct ext2_super_block *es = EXT2_SB(sb)->s_es; 
101: 
102: if (le32_to_cpu(es->s_rev_level) > EXT2_GOOD_OLD_REV) 
103: return; 
104: 
105: ext2_warning(sb, __FUNCTION__, 
106: "updating to rev %d because of new feature flag, " 
107: "running e2fsck is recommended", 
108: EXT2_DYNAMIC_REV); 

这里 __FUNCTION__ 将被替换为字符串 "ext2_update_dynamic_rev"。虽然 
__FUNCTION__ 看起来类似于标准 C 中的 __FILE__,但实际上 __FUNCTION__ 
是被编译器替换的,不象 __FILE__ 被预处理器替换。 


内建函数 
======== 

GNU C 提供了大量的内建函数,其中很多是标准 C 库函数的内建版本,例如 
memcpy,它们与对应的 C 库函数功能相同,本文不讨论这类函数,其他内建函数 
的名字通常以 __builtin 开始。 

* __builtin_return_address (LEVEL) 

内建函数 __builtin_return_address 返回当前函数或其调用者的返回地址,参数 
LEVEL 指定在栈上搜索框架的个数,0 表示当前函数的返回地址,1 表示当前函数 
的调用者的返回地址,依此类推。例如: 

++++ kernel/sched.c 
437: printk(KERN_ERR "schedule_timeout: wrong timeout " 
438: "value %lx from %p ", timeout, 
439: __builtin_return_address(0)); 

* __builtin_constant_p(EXP) 

内建函数 __builtin_constant_p 用于判断一个值是否为编译时常数,如果参数 
EXP 的值是常数,函数返回 1,否则返回 0。例如: 

++++ include/asm-i386/bitops.h 
249: #define test_bit(nr,addr) 
250: (__builtin_constant_p(nr) ? 
251: constant_test_bit((nr),(addr)) : 
252: variable_test_bit((nr),(addr))) 

很多计算或操作在参数为常数时有更优化的实现,在 GNU C 中用上面的方法可以 
根据参数是否为常数,只编译常数版本或非常数版本,这样既不失通用性,又能在 
参数是常数时编译出最优化的代码。 

* __builtin_expect(EXP, C) 

内建函数 __builtin_expect 用于为编译器提供分支预测信息,其返回值是整数表 
达式 EXP 的值,C 的值必须是编译时常数。例如: 

++++ include/linux/compiler.h 
13: #define likely(x) __builtin_expect((x),1) 
14: #define unlikely(x) __builtin_expect((x),0) 
++++ kernel/sched.c 
564: if (unlikely(in_interrupt())) { 
565: printk("Scheduling in interrupt "); 
566: BUG(); 
567: } 

这个内建函数的语义是 EXP 的预期值是 C,编译器可以根据这个信息适当地重排 
语句块的顺序,使程序在预期的情况下有更高的执行效率。上面的例子表示处于中 
断上下文是很少发生的,第 565-566 行的目标码可能会放在较远的位置,以保证 
经常执行的目标码更紧凑。

 

以上是关于Linux 内核使用的 GNU C 扩展的主要内容,如果未能解决你的问题,请参考以下文章

bool 是原生 C 类型吗?

bool 是原生 C 类型吗?

GNU C编译器的gnu11和c11

linux内核将允许使用 C99/C11 功能

gnu/linux的简介

Linux基础——内核