hdu 1796(容斥原理+状态压缩)
Posted AC菜鸟机
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 1796(容斥原理+状态压缩)相关的知识,希望对你有一定的参考价值。
How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6630 Accepted Submission(s): 1913
Problem Description
Now
you get a number N, and a M-integers set, you should find out how many
integers which are small than N, that they can divided exactly by any
integers in the set. For example, N=12, and M-integer set is {2,3}, so
there is another set {2,3,4,6,8,9,10}, all the integers of the set can
be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There
are a lot of cases. For each case, the first line contains two integers
N and M. The follow line contains the M integers, and all of them are
different from each other. 0<N<2^31,0<M<=10, and the M
integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
题意:在 1-(n-1) 中能够被输入的数字整除的数字的数量。
思路:容斥原理+枚举状态,碰到奇数加上(n-1)/lcm(a,b,c..) 碰到偶数减(n-1)/lcm(a,b,c...) 注意0不能取,发现本人一直不是很会用深搜,所以还是用状压了 = =
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> #include <stdlib.h> #include <math.h> using namespace std; int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } int lcm(int a,int b){ return a/gcd(a,b)*b; } int main() { int n,m,a[15]; while(scanf("%d%d",&n,&m)!=EOF){ int id = 0,num; for(int i=0;i<m;i++){ scanf("%d",&num); if(num!=0) a[id++] = num; } int ans = 0; for(int i=1;i<(1<<id);i++){ int l=1,cnt=0; for(int j=0;j<id;j++){ if((i>>j)&1){ cnt++; l = lcm(l,a[j]); } } if(cnt&1){ ans+=(n-1)/l; ///不包括自身所以n-1 }else{ ans-=(n-1)/l; } } printf("%d\n",ans); } return 0; }
以上是关于hdu 1796(容斥原理+状态压缩)的主要内容,如果未能解决你的问题,请参考以下文章
HDU 1796How many integers can you find(容斥原理)
[容斥原理] hdu 1796 How many integers can you find
hdu1796 How many integers can you find 容斥原理
HDU 1796 How many integers can you find(容斥原理)