[Luogu P1439] LCS升级版

Posted rain142857

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Luogu P1439] LCS升级版相关的知识,希望对你有一定的参考价值。

badge:技术图片 技术图片

普通O(n^2)很容易想到,但是TLE。

#include<cstdio>
using namespace std;
int a[1010],b[1010],dp[1010][1010];
int maxf(int x,int y){return x>y?x:y;}
int minf(int x,int y){return x<y?x:y;}
int main()
{
    int n,m,i,j,k;
    scanf("%d",&n);
    for(i=1;i<=n;i++)scanf("%d",&a[i]);
    for(i=1;i<=n;i++)scanf("%d",&b[i]);
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=n;j++)
        {
            dp[i][j]=maxf(dp[i][j],maxf(dp[i-1][j],dp[i][j-1]));
            if(a[i]==b[j])
            dp[i][j]=maxf(dp[i][j],dp[i-1][j-1]+1);
        }
    }
    printf("%d
",dp[n][n]);
    return 0;
}

我们思考这题的关键点:两个序列都是1~n的排列。

排列?这意味着两个序列里数都一样,只是位置不同。

有点类似于友好城市,只需要求一堆不相交的配对即可。

画出图来,把右边的序列按照左边每个数所在的位置重新填好,求一个最长上升子序列即可。

即:记录a序列里每个数填的位置f[a[i]]=i,然后把b[i]赋成f[b[i]]。在b序列里O(nlogn)求一下LIS即可。

#include<cstdio>
using namespace std;
int a[1000010],b[1000010];
int c[1000010],f[1000010],tot;
int pos(int l,int r,int val)
{
    int mid,ans;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(c[mid]>val)r=mid-1,ans=mid;
        else l=mid+1;
    }
    return ans;
}
int main()
{
    int n,m,i,j,k;
    scanf("%d",&n);
    for(i=1;i<=n;i++)scanf("%d",&a[i]);
    for(i=1;i<=n;i++)scanf("%d",&b[i]);
    for(i=1;i<=n;i++)f[a[i]]=i;
    for(i=1;i<=n;i++)b[i]=f[b[i]];
    //for(i=1;i<=n;i++)printf("%d ",f[i]);printf("
");
    //for(i=1;i<=n;i++)printf("%d ",b[i]);printf("
");
    c[++tot]=b[1];
    for(i=2;i<=n;i++)
    {
        if(b[i]>c[tot])c[++tot]=b[i];
        else
        {
            k=pos(1,tot,b[i]);
            //printf("found pos %d
",k);
            c[k]=b[i];
        }
    }
    printf("%d
",tot);
    return 0;
}
/*
5 
3 2 1 4 5
1 2 3 4 5
*/

以上是关于[Luogu P1439] LCS升级版的主要内容,如果未能解决你的问题,请参考以下文章

[洛谷P1439]排列LCS问题

洛谷 [p1439] 最长公共子序列 (NlogN)

luogu P1439 模板最长公共子序列

luogu P1439 模板最长公共子序列

P1439 模板最长公共子序列 题解

最长公共子序列转最大上升子序列(洛谷p1439)