Loj #6703 - 小Q的序列

Posted weiyanpeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Loj #6703 - 小Q的序列相关的知识,希望对你有一定的参考价值。

考虑朴素dp。
[ f_{i,j} = f_{i-1,j} + f_{i-1,j-1}*(j+a_i) ]
稍微转换一下下标:
[ f_{i,Delta} = f_{i-1,Delta -1} + (a_i+i-Delta)f_{i-1,Delta} ]
为了方便,以下的 (a_i) 均指 (a_i + i)

拆组合意义:

一个位置上乘了 (a_i+i) 的话代表这个位置不选,并且有 $a_i+i $ 的贡献。

然后对于剩下的 (n) 个数, 答案是 (sum g_{n,i})

其中 (g) 的转移:
[ g_{i,j} = g_{i-1,j -1} -j * g_{i-1,j} ]
为了方便稍微改一下,(g_i = g_i * (-1)^i) 。新的转移是:
[ g_{i,j} = -g_{i-1,j -1} +j * g_{i-1,j} ]

新的 dp 的组合意义是 (i) 个数分成 (j) 组的方案数,每一组有一个 (-1) 的贡献。

考虑 (g_{?,j}) 的 EGF :
[ frac {(1-e^x)^j}{j!} ]

然后一列相当于是可以选任意个,那么就是:
[ large e^{(1-e^x)} ]
前面可以分治 FFT,复杂度 (O(nlog^2 n))

代码

#include<bits/stdc++.h>
using namespace std;
const int N=5e5+5;
typedef long long ll;

const int mod=998244353;
int add(int a,int b){a+=b;return a>=mod?a-mod:a;}
int sub(int a,int b){a-=b;return a<0?a+mod:a;}
int mul(int a,int b){return (ll)a*b%mod;}
int qpow(int a,int b){int ret=1;for(;b;b>>=1,a=mul(a,a))if(b&1)ret=mul(ret,a);return ret;}
/*math*/

namespace Template_poly{
    typedef vector<int> poly;
    int rev[N];
    poly poly_add(poly A,poly B){
        A.resize(max(A.size(),B.size()));
        for(size_t i=0;i<B.size();i++)A[i]=add(A[i],B[i]);
        return A;
    }
    poly poly_sub(poly A,poly B){
        A.resize(max(A.size(),B.size()));
        for(size_t i=0;i<B.size();i++)A[i]=sub(A[i],B[i]);
        return A;
    }
    void DFT(int *t,int n,int type){
        int l=0;while(1<<l<n)++l;
        for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
        for(int i=0;i<n;i++)if(rev[i]>i)swap(t[rev[i]],t[i]);
        for(int step=1;step<n;step<<=1){
            int wn=qpow(3,(mod-1)/(step<<1));
            for(int i=0;i<n;i+=step<<1){
                int w=1;
                for(int k=0;k<step;k++,w=mul(w,wn)){
                    int x=t[i+k],y=mul(t[i+k+step],w);
                    t[i+k]=add(x,y),t[i+k+step]=sub(x,y);
                }
            }
        }
        if(type==1)return;
        for(int i=1;i<n-i;i++)swap(t[i],t[n-i]);
        int inv=qpow(n,mod-2);
        for(int i=0;i<n;i++)t[i]=mul(t[i],inv);
    }
    poly NTT(poly A,int n,poly B,int m){
        static poly res,PolA,PolB;
        PolA=A,PolB=B;
        int len=1;while(len < n+m)len<<=1;
        res.resize(len);
        PolA.resize(len),PolB.resize(len);
        DFT(&PolA[0],len,1);DFT(&PolB[0],len,1);
        for(int i=0;i<len;i++) res[i]= mul(PolA[i],PolB[i]);
        DFT(&res[0],len,-1);
        res.resize(n+m-1);
        return res;
    }
    poly NTT(poly A,poly B){
        return NTT(A,A.size(),B,B.size());
    }
    poly poly_inv(poly A,int n){
        if(n==1)return poly(1,qpow(A[0],mod-2));
        int len=1<<((int)ceil(log2(n))+1);
        poly x=poly_inv(A,(n+1)>>1),y;
        x.resize(len),y.resize(len);
        for(int i=0;i<n;i++)y[i]=A[i];
        DFT(&x[0],len,1),DFT(&y[0],len,1);
        for(int i=0;i<len;i++)x[i]=mul(x[i],sub(2,mul(x[i],y[i])));
        DFT(&x[0],len,-1);
        x.resize(n);
        return x;
    }
    poly poly_inv(poly A){
        return poly_inv(A,A.size());
    }
    poly Deri(poly A){
        int n=A.size();
        for(int i=1;i<n;i++)A[i-1]=mul(A[i],i);
        A.resize(n-1);
        return A;
    }

    poly Inte(poly A){
        int n=A.size();
        A.resize(n+1);
        for(int i=n;i;i--)A[i]=mul(A[i-1],qpow(i,mod-2));
        A[0]=0;
        return A;
    }

    poly ln(poly A){
        int len=A.size();
        A=Inte(NTT(Deri(A),poly_inv(A)));
        A.resize(len);
        return A;
    }

    poly exp(poly A,int n){
        if(n==1)return poly(1,1);
        poly x=exp(A,(n+1)>>1),y;
        x.resize(n);
        y=ln(x);
        for(int i=0;i<n;i++)y[i]=sub(A[i],y[i]);
        y[0]++;
        x=NTT(x,y);
        x.resize(n);
        return x;
    }
    poly exp(poly A){
        return exp(A,A.size());
    }

    poly sqrt(poly A,int n){
        if(n==1)return poly(1,1);
        poly x=sqrt(A,(n+1)>>1),y;
        x.resize(n),y.resize(n);
        for(int i=0;i<n;i++)y[i]=A[i];
        x=poly_add(NTT(poly_inv(x),y),x);
        int inv2=qpow(2,mod-2);
        for(int i=0;i<n;i++)
            x[i]=mul(x[i],inv2);
        x.resize(n);
        return x;
    }
    poly sqrt(poly A){
        return sqrt(A,A.size());
    }
    poly rever(poly A){
        reverse(A.begin(),A.end());
        return A;
    }
    void div(poly A,poly B,poly &C,poly &D){
        int n=A.size(),m=B.size();
        poly ra=rever(A),rb=rever(B);
        ra.resize(n-m+1),rb.resize(n-m+1);
        C=NTT(ra,poly_inv(rb));
        C.resize(n-m+1);
        C=rever(C);
        D=poly_sub(A,NTT(B,C));
        D.resize(m);
    }
}using namespace Template_poly;
int n,a[N];

poly Divide(int l,int r){
    int mid = (l+r)>>1;
    if(l==r){
        poly ret(2,1);ret[1]=a[l];
        return ret;
    }return NTT(Divide(l,mid),Divide(mid+1,r));
}
poly A,B;
int main()
{
    cin >> n;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i] += i;
    }
    A=Divide(1,n);
    B.resize(n+2);
    for(int i=1,_f=1;i<=n+1;i++){
        _f=mul(_f,i);
        B[i] = mod-qpow(_f,mod-2);
    }
    B=exp(B);
    for(int i=1,f=1;i<=n;i++){
        f=mul(f,i);
        B[i] = mul(B[i],f);
    
    }
    int ans = 0;
    for(int i=0;i<=n;i++){
        int rest = n-i,d=mod-1;
        if((rest-1)%2)d=1;
        ans = add(ans, mul(d, mul(A[i], B[n-i])));
    }
    cout << sub(ans,1) << endl;
}

以上是关于Loj #6703 - 小Q的序列的主要内容,如果未能解决你的问题,请参考以下文章

LOJ 6057 - [HNOI2016]序列 加强版再加强版

loj2051 「HNOI2016」序列

HDU-6703-array-2019CCPC选拔赛

[LOJ#2270][BZOJ4912][SDOI2017]天才黑客

HDU 6703 array(主席树)

LOJ #6031 字符串