HDU-5446-UnknownTreasure(组合数,中国剩余定理)
Posted ydddd
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU-5446-UnknownTreasure(组合数,中国剩余定理)相关的知识,希望对你有一定的参考价值。
链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5446
题意:
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
思路:
lucas定理,p为素数时。
C(n, m) = C(n/p, m/p)+C(n%p, m%p).
对每个pi算出值,然后中国剩余定理求解。
因为数值较大。。很容易溢出,快速乘,顺序也会导致溢出。。
求逆元的时候,用快速幂会溢出,可以把快速幂里面的乘法用快速乘。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
using namespace std;
typedef long long LL;
const int INF = 1e9;
const int MAXN = 1e5+10;
const int MOD = 1e9+7;
LL F[MAXN], Finv[MAXN];
LL P[MAXN], A[MAXN];
LL MulMod(LL a, LL b, LL mod)
{
LL res = 0;
while(b>0)
{
if (b&1)
res = (res+a)%mod;
a = (a+a)%mod;
b >>= 1;
}
return res;
}
LL PowMod(LL a, LL b, LL mod)
{
LL res = 1;
while(b>0)
{
if (b&1)
res = res*a%mod;
a = a*a%mod;
b >>= 1;
}
return res;
}
void Init(LL n, LL m, LL mod)
{
F[0] = F[1] = 1;
for (LL i = 2;i <= n;i++)
F[i] = F[i-1]*i%mod;
Finv[m] = PowMod(F[m], mod-2, mod);
Finv[n-m] = PowMod(F[n-m], mod-2, mod);
}
LL Comb(LL n, LL m, LL mod)
{
if (m > n)
return 0;
if (m == n)
return 1;
Init(n, m, mod);
return F[n]*Finv[m]%mod*Finv[n-m]%mod;
}
LL Lucas(LL n, LL m, LL mod)
{
if (m == 0)
return 1;
return MulMod(Lucas(n/mod, m/mod, mod), Comb(n%mod, m%mod, mod), mod);
}
void ExGCD(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1, y = 0;
return;
}
ExGCD(b, a%b, x, y);
LL tmp = x;
x = y;
y = tmp-a/b*y;
}
LL CRT(int k)
{
LL Pm = 1;
LL res = 0;
for (int i = 1;i <= k;i++)
Pm *= P[i];
for (int i = 1;i <= k;i++)
{
LL x, y;
LL mi = Pm/P[i];
ExGCD(mi, P[i], x, y);
res = (res+MulMod(MulMod(x, mi, Pm), A[i], Pm))%Pm;
}
return (res+Pm)%Pm;
}
int main()
{
int t, k;
LL n, m;
scanf("%d", &t);
while(t--)
{
scanf("%lld%lld%d", &n, &m, &k);
for (int i = 1;i <= k;i++)
scanf("%lld", &P[i]);
for (int i = 1;i <= k;i++)
A[i] = Lucas(n, m, P[i]);
printf("%lld
", CRT(k));
}
return 0;
}
以上是关于HDU-5446-UnknownTreasure(组合数,中国剩余定理)的主要内容,如果未能解决你的问题,请参考以下文章