双向LSTM模型的tensorflow实现

Posted kisetsu

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了双向LSTM模型的tensorflow实现相关的知识,希望对你有一定的参考价值。

来源:https://github.com/jiangxinyang227/NLP-Project/text_classifier

import tensorflow as tf
from .base import BaseModel


class BiLstmAttenModel(BaseModel):
    def __init__(self, config, vocab_size, word_vectors):
        super(BiLstmAttenModel, self).__init__(config=config, vocab_size=vocab_size, word_vectors=word_vectors)
        # 构建模型
        self.build_model()
        # 初始化保存模型的saver对象
        self.init_saver()
    def build_model(self):
        # 词嵌入层
        with tf.name_scope("embedding"):
            # 利用预训练的词向量初始化词嵌入矩阵
            if self.word_vectors is not None:
                embedding_w = tf.Variable(tf.cast(self.word_vectors, dtype=tf.float32, name="word2vec"), name="embedding_w")
            else:
                embedding_w = tf.get_variable("embedding_w", shape=[self.vocab_size, self.config["embedding_size"]],initializer=tf.contrib.layers.xavier_initializer())
            # 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
            embedded_words = tf.nn.embedding_lookup(embedding_w, self.inputs)
            # 定义两层双向LSTM的模型结构
            with tf.name_scope("Bi-LSTM"):
                for idx, hidden_size in enumerate(self.config["hidden_sizes"]):
                    with tf.name_scope("Bi-LSTM" + str(idx)):
                        # 定义前向LSTM结构
                        lstm_fw_cell = tf.nn.rnn_cell.DropoutWrapper(
                            tf.nn.rnn_cell.LSTMCell(num_units=hidden_size, state_is_tuple=True),
                            output_keep_prob=self.keep_prob)
                        # 定义反向LSTM结构
                        lstm_bw_cell = tf.nn.rnn_cell.DropoutWrapper(
                            tf.nn.rnn_cell.LSTMCell(num_units=hidden_size, state_is_tuple=True),
                            output_keep_prob=self.keep_prob)

                        # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
                        # outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],
                        # fw和bw的hidden_size一样
                        # self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
                        outputs, current_state = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell,
                                                                                 embedded_words, dtype=tf.float32,
                                                                                 scope="bi-lstm" + str(idx))
                        # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2]
                        embedded_words = tf.concat(outputs, 2)

        # 将最后一层Bi-LSTM输出的结果分割成前向和后向的输出
        outputs = tf.split(embedded_words, 2, -1)
        # 在Bi-LSTM+Attention的论文中,将前向和后向的输出相加
        with tf.name_scope("Attention"):
            H = outputs[0] + outputs[1]
            # 得到Attention的输出
            output = self._attention(H)
            output_size = self.config["hidden_sizes"][-1]

        # 全连接层的输出
        with tf.name_scope("output"):
            output_w = tf.get_variable(
                "output_w",
                shape=[output_size, self.config["num_classes"]],
                initializer=tf.contrib.layers.xavier_initializer())

            output_b = tf.Variable(tf.constant(0.1, shape=[self.config["num_classes"]]), name="output_b")
            self.l2_loss += tf.nn.l2_loss(output_w)
            self.l2_loss += tf.nn.l2_loss(output_b)
            self.logits = tf.nn.xw_plus_b(output, output_w, output_b, name="logits")
            self.predictions = self.get_predictions()

        self.loss = self.cal_loss()
        self.train_op, self.summary_op = self.get_train_op()

    def _attention(self, H):
        """
        利用Attention机制得到句子的向量表示
        """
        # 获得最后一层LSTM的神经元数量
        hidden_size = self.config["hidden_sizes"][-1]

        # 初始化一个权重向量,是可训练的参数
        W = tf.Variable(tf.random_normal([hidden_size], stddev=0.1))

        # 对Bi-LSTM的输出用激活函数做非线性转换
        M = tf.tanh(H)

        # 对W和M做矩阵运算,M=[batch_size, time_step, hidden_size],计算前做维度转换成[batch_size * time_step, hidden_size]
        # newM = [batch_size, time_step, 1],每一个时间步的输出由向量转换成一个数字
        newM = tf.matmul(tf.reshape(M, [-1, hidden_size]), tf.reshape(W, [-1, 1]))

        # 对newM做维度转换成[batch_size, time_step]
        restoreM = tf.reshape(newM, [-1, self.config["sequence_length"]])

        # 用softmax做归一化处理[batch_size, time_step]
        self.alpha = tf.nn.softmax(restoreM)

        # 利用求得的alpha的值对H进行加权求和,用矩阵运算直接操作
        r = tf.matmul(tf.transpose(H, [0, 2, 1]), tf.reshape(self.alpha, [-1, self.config["sequence_length"], 1]))

        # 将三维压缩成二维sequeezeR=[batch_size, hidden_size]
        sequeezeR = tf.squeeze(r)

        sentenceRepren = tf.tanh(sequeezeR)

        # 对Attention的输出可以做dropout处理
        output = tf.nn.dropout(sentenceRepren, self.keep_prob)

        return output

base.py

import tensorflow as tf
import numpy as np

class BaseModel(object):
    def __init__(self, config, vocab_size=None, word_vectors=None):
        """
        文本分类的基类,提供了各种属性和训练,验证,测试的方法
        :param config: 模型的配置参数
        :param vocab_size: 当不提供词向量的时候需要vocab_size来初始化词向量
        :param word_vectors:预训练的词向量,word_vectors 和 vocab_size必须有一个不为None
        """
        self.config = config
        self.vocab_size = vocab_size
        self.word_vectors = word_vectors
        self.inputs = tf.placeholder(tf.int32, [None, None], name="inputs")  # 数据输入
        self.labels = tf.placeholder(tf.float32, [None], name="labels")  # 标签
        self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")  # dropout

        self.l2_loss = tf.constant(0.0)  # 定义l2损失
        self.loss = 0.0  # 损失
        self.train_op = None  # 训练入口
        self.summary_op = None
        self.logits = None  # 模型最后一层的输出
        self.predictions = None  # 预测结果
        self.saver = None  # 保存为ckpt模型的对象

    def cal_loss(self):
        """
        计算损失,支持二分类和多分类
        :return:
        """
        with tf.name_scope("loss"):
            losses = 0.0
            if self.config["num_classes"] == 1:
                losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits,
                                                                 labels=tf.reshape(self.labels, [-1, 1]))
            elif self.config["num_classes"] > 1:
                self.labels = tf.cast(self.labels, dtype=tf.int32)
                losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits,
                                                                        labels=self.labels)
            loss = tf.reduce_mean(losses)
            return loss

    def get_optimizer(self):
        """
        获得优化器
        :return:
        """
        optimizer = None
        if self.config["optimization"] == "adam":
            optimizer = tf.train.AdamOptimizer(self.config["learning_rate"])
        if self.config["optimization"] == "rmsprop":
            optimizer = tf.train.RMSPropOptimizer(self.config["learning_rate"])
        if self.config["optimization"] == "sgd":
            optimizer = tf.train.GradientDescentOptimizer(self.config["learning_rate"])
        return optimizer

    def get_train_op(self):
        """
        获得训练的入口
        :return:
        """
        # 定义优化器
        optimizer = self.get_optimizer()

        trainable_params = tf.trainable_variables()
        gradients = tf.gradients(self.loss, trainable_params)
        # 对梯度进行梯度截断
        clip_gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_grad_norm"])
        train_op = optimizer.apply_gradients(zip(clip_gradients, trainable_params))

        tf.summary.scalar("loss", self.loss)
        summary_op = tf.summary.merge_all()

        return train_op, summary_op

    def get_predictions(self):
        """
        得到预测结果
        :return:
        """
        predictions = None
        if self.config["num_classes"] == 1:
            predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.int32, name="predictions")
        elif self.config["num_classes"] > 1:
            predictions = tf.argmax(self.logits, axis=-1, name="predictions")
        return predictions

    def build_model(self):
        """
        创建模型
        :return:
        """
        raise NotImplementedError

    def init_saver(self):
        """
        初始化saver对象
        :return:
        """
        self.saver = tf.train.Saver(tf.global_variables())

    def train(self, sess, batch, dropout_prob):
        """
        训练模型
        :param sess: tf的会话对象
        :param batch: batch数据
        :param dropout_prob: dropout比例
        :return: 损失和预测结果
        """

        feed_dict = {self.inputs: batch["x"],
                     self.labels: batch["y"],
                     self.keep_prob: dropout_prob}

        # 训练模型
        _, summary, loss, predictions = sess.run([self.train_op, self.summary_op, self.loss, self.predictions],
                                                 feed_dict=feed_dict)
        return summary, loss, predictions

    def eval(self, sess, batch):
        """
        验证模型
        :param sess: tf中的会话对象
        :param batch: batch数据
        :return: 损失和预测结果
        """
        feed_dict = {self.inputs: batch["x"],
                     self.labels: batch["y"],
                     self.keep_prob: 1.0}

        summary, loss, predictions = sess.run([self.summary_op, self.loss, self.predictions], feed_dict=feed_dict)
        return summary, loss, predictions

    def infer(self, sess, inputs):
        """
        预测新数据
        :param sess: tf中的会话对象
        :param inputs: batch数据
        :return: 预测结果
        """
        feed_dict = {self.inputs: np.array([inputs]),
                     self.keep_prob: 1.0}

        predict = sess.run(self.predictions, feed_dict=feed_dict)

        return predict

以上是关于双向LSTM模型的tensorflow实现的主要内容,如果未能解决你的问题,请参考以下文章

在 TensorFlow 中使用 LSTM-CGAN 生成 MNIST 数字

tensorflow实现基于LSTM的文本分类方法

第二十一节,使用TensorFlow实现LSTM和GRU网络

在tensorflow中使用glstm(Group LSTM) cell构建双向rnn

tensorflow实现基于LSTM的文本分类方法

使用 tensorflow 理解 LSTM 模型进行情感分析