通过位运算来解决一些算法题
Posted ericling
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了通过位运算来解决一些算法题相关的知识,希望对你有一定的参考价值。
在刷pat的1073 多选题常见计分法题目时,发现如果需要判断每一个学生对应每道题的多选题是否错选,漏选,以及选对是比较麻烦的一件事,因为这涉及到两个集合的判断,判断一个集合是否是另一个集合的子集(即漏选,得一半的分),或者说两个集合是否完全相等(即题目得满分)。
刚开始通过set容器来保存每一道题的正确答案,以及学生选择的答案,然后比较两个集合的大小,大小一致则for循环判断每一个元素是否都存在。结果发现这种思路过于复杂,且易超时。
联想到每一个选项是否一致,可以通过异或运算判断两个集合,如果结果为0则得满分,否则就是错选或者漏选,错选漏选通过或运算来判断是否能够得到正确集合,如果可以则是漏选,如果不能则说明是错选。
在完整的实现这道题之前,先来学习一下位运算的基础。
1.常见的位运算
常见的位运算有6个,见如下表格:
Operators | Meaning of operators |
---|---|
& | Bitwise AND,按位与 |
| | Bitwise OR,按位或 |
^ | Bitwise XOR,按位异或 |
~ | Bitwise complement,按位取反 |
<< | Shift left,左移 |
>> | Shift right,右移 |
1.1按位与
运算举例,对12和25进行按位与操作:
12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bit Operation of 12 and 25
00001100
& 00011001
________
00001000 = 8 (In decimal)
当且仅当,两个二进制位都为1时,结果才为1
代码举例:
#include <stdio.h>
int main()
{
int a = 12, b = 25;
printf("Output = %d", a&b);
return 0;
}
Output:
Output = 8
1.2按位或
运算举例,对12和25进行按位或操作:
12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bitwise OR Operation of 12 and 25
00001100
| 00011001
________
00011101 = 29 (In decimal)
当且仅当,两个二进制位都为0时,结果才为0,其它情况都为1
代码举例:
#include <stdio.h>
int main()
{
int a = 12, b = 25;
printf("Output = %d", a|b);
return 0;
}
Output:
Output = 29
1.3按位异或
运算举例,对12和25进行按位异或操作:
12 = 00001100 (In Binary)
25 = 00011001 (In Binary)
Bitwise XOR Operation of 12 and 25
00001100
^ 00011001
________
00010101 = 21 (In decimal)
当且仅当,两个二进制位相异时,结果才为1,其它情况都为0
代码举例:
#include <stdio.h>
int main()
{
int a = 12, b = 25;
printf("Output = %d", a^b);
return 0;
}
Output:
Output = 21
对于异或运算的理解
- 找出两个数有差异的位,a^b得到的结果中,1表示在该位两数存在差别,0表示无差别,这个很好理解
- 将一个数按照另一个数的对应位的取值改变取值,如a^b(10001010^00110011),可以看成a按照b的要求改变对应位的取值(1为改变,0为不改变)故得到10111001
1.4按位取反
运算举例,对35进行按位取反操作:
35 = 00100011 (In Binary)
Bitwise complement Operation of 35
~ 00100011
________
11011100 = 220 (In decimal)
代码举例:
#include <stdio.h>
int main()
{
printf("Output = %d
",~35);
printf("Output = %d
",~-12);
return 0;
}
Output:
Output = -36
Output = 11
为什么这里35按位取反的结果不是220,而是-36。
对于任何整数n,n的按位取反将为-(n + 1)。要了解这一点,需要了解二进制的补码表示
十进制 二进制 二进制补码
0 00000000 -(11111111+1) = -00000000 = -0(decimal)
1 00000001 -(11111110+1) = -11111111 = -256(decimal)
12 00001100 -(11110011+1) = -11110100 = -244(decimal)
220 11011100 -(00100011+1) = -00100100 = -36(decimal)
35的按位补码为220(十进制)。 220的2的补码是-36。因此,输出是-36而不是220。
1.5移位运算
1.左移
可以简单理解为*2,对比十进制中的左移,比如10进制的13左移1位得到130,所以
二进制中的13左移1位得到26
左移n位,结果就是乘以2的n次方
1101
<<1
11010
十进制为26
2.右移
类比左移,右移就是除以2
代码举例:
#include <stdio.h>
int main()
{
int num=212, i;
for (i=0; i<=2; ++i)
printf("Right shift by %d: %d
", i, num>>i);
printf("
");
for (i=0; i<=2; ++i)
printf("Left shift by %d: %d
", i, num<<i);
return 0;
}
Output
Right Shift by 0: 212
Right Shift by 1: 106
Right Shift by 2: 53
Left Shift by 0: 212
Left Shift by 1: 424
Left Shift by 2: 848
2.解题思路
对于每一个选项,我都可以通过二进制来表示出来,比如
a--00001
b--00010
c--00100
d--01000
e--10000
//因为选项个数在[2,5]区间,所以最大选项就是e
这样的话,通过两个集合(集合A={所有的正确选项的二进制表示的或运算结果},集合B={所有学生的选项的二进制表示的或运算结果})
比如
A=10001,即正确的选项为ae
B=10000,即学生的选项为e
第一步对A和B进行异或运算,
如果结果为0,说明满分
如果结果不为0,说明存在选项不一致,可能漏选,可能错选
第二步对A和B进行或运算,
- 如果结果为A,说明B就是漏选的,得分50%
- 否则就是有错选,不得分
第三步对A和B的异或结果和{1,2,4,8,16}集合中的元素分别进行与运算,判断当前题目,学生选错的选项是哪一个
比如:正确选项是10011,学生的答案是01100,异或结果为11111,对异或结果11111和1,2,4,8,16分别进行与运算,比如11111&00001结果不为零,则说明该选项是错误的,以此类推,循环进行与运算,得出学生选择的选项都是错误的。正确的选项都没有选,所以也记为错选选项。
通过异或运算和或运算以及与运算来判断全选对,漏选,错选以及对应的错误选项就简单多了
3.代码实现
#include<iostream>
#include<vector>
using namespace std;
int main() {
//1.保存所有的题目信息
int n,m;
scanf("%d%d",&n,&m);
//a=00001=1
//b=00010=2
//c=00100=4
//d=01000=8
//e=10000=16
int hash[5] = {1,2,4,8,16} , trueopt[m]= {0};
int fullscore[m];
//1.记录每道题的总分到fullscore数组,每道题的正确选项到trueopt
for(int i=0; i<m; i++) {
int tmpscore,tmpalloptsize,tmprightoptsize;
scanf("%d%d%d",&tmpscore,&tmpalloptsize,&tmprightoptsize);
fullscore[i] = tmpscore;
for(int j=0; j<tmprightoptsize; j++) {
char tmpopt;
scanf(" %c",&tmpopt);
trueopt[i] +=hash[tmpopt-'a'];
}
}
//记录每道题每个选项的出错次数
vector<vector<int>> cnt(m,vector<int>(5));
//2.计算每个学生的分数,并保存错误选项出错次数到cnt中
for(int i=0; i<n; i++) {
double stuscore = 0;
for(int j=0; j<m; j++) {
getchar();
int k;
scanf("(%d",&k);
int selectedopt = 0;
for(int o=0; o<k; o++) {
char tmpc;
scanf(" %c",&tmpc);
selectedopt+=hash[tmpc-'a'];
}
scanf(")");
//计算异或结果
int result = selectedopt^trueopt[j];
if(result) {
//不为零,有漏选或错选,进行或运算
int huo = selectedopt|trueopt[j];
if(huo == trueopt[j]) {
//漏选
stuscore += fullscore[j]*1.0/2;
}
if(result) {
//错选,不得分,记录错误选项
for (int k = 0; k < 5; k++)
if (result & hash[k]) cnt[j][k]++;
}
} else {
//满分
stuscore += fullscore[j];
}
}
printf("%.1f
",stuscore);
}
//循环遍历cnt错误选项最多的
int maxcnt =0;
for(int i=0; i<m; i++) {
for(int j=0; j<cnt[i].size(); j++) {
maxcnt = cnt[i][j]>maxcnt?cnt[i][j]:maxcnt;
}
}
if (maxcnt == 0) {
printf("Too simple
");
} else {
for (int i = 0; i < m; i++) {
for (int j = 0; j < cnt[i].size(); j++) {
if (maxcnt == cnt[i][j])
printf("%d %d-%c
", maxcnt, i+1, 'a'+j);
}
}
}
return 0;
}
以上是关于通过位运算来解决一些算法题的主要内容,如果未能解决你的问题,请参考以下文章