Comet OJ - Contest #13 补题题解

Posted tianwell

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Comet OJ - Contest #13 补题题解相关的知识,希望对你有一定的参考价值。

A.险恶的迷宫

题意:在二维平面坐标内,给出一个圆心坐标 (a,b),以及圆的半径 r , 再给出 n 个点的坐标 (x_i,y_i),  求有多少点在圆内。

数据范围:0  <  n  <= 1e5,      0< r , x , y  <=1e9

思路:对于判断距离根据勾股定理: sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)) <= r ,即在圆的范围内。由于此题数据较大,sqrt可能导致精度损失,所以直接开long long 进行平方比较 :(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2 )<= r*r;

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 1e5+7;

int main(){
    int n;
    ll a,b,r;
    cin>>n>>a>>b>>r;
    int ans = 0;
    for(int i=1;i<=n;i++){
        ll x,y;
        cin>>x>>y;
        if((x-a)*(x-a)+(y-b)*(y-b)<=r*r) ans++;
    }
    cout<<ans<<endl;
}

B.夕日的光辉

题意:给出长为 n 的字符串 str . 找到pink的子串序列.  求符合条件组成的pink自序列,相邻两个 ( 比如p与i互相相邻,n与k互相相邻 ) 最大坐标差-1
思路:贪心:求p-i间隔最大时,i-n间隔最大时,n-k坐标间隔最大时.  比如要使p-i坐标差最大,即p取其能取道的最左边,i取其符合条件组成的最右边。

code:

技术图片
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 1e6+7;
const int inf = 0x3f3f3f3f;
int p0[maxn];
int p1[maxn];
int p2[maxn];
int p3[maxn];

int fismin(int com,int p[],int len){
//找到第一个大于该数的位置
    for(int i=1;i<=len;i++){
        if(p[i]>com) return i;
    }
//没找到返回0
    return 0;
}
int fismax(int com,int p[],int len){
//找到最后一个小于该数的位置
    if(p[len]<com) return len;
    else{
        for(int i=1;i<=len;i++){
            if(p[i]>com) return i-1;
        }
        return len;
    }
}
int main(){
    int T;
    cin>>T;
    string s;
    while(T--){
        int len;
        cin>>len;
        cin>>s;
        int f0,f1,f2,f3;
        f0 = f1 = f2 = f3 = 0;
        //p-i间隔最大
        for(int i=0;i<len;i++){
            if(s[i]==p) p0[++f0] = i;
            if(s[i]==i) p1[++f1] = i;
            if(s[i]==n) p2[++f2] = i;
            if(s[i]==k) p3[++f3] = i;       
        }
        int ans = -1;
        if(f0&&f1&&f2&&f3){
            int ff1,ff2;
            //1.p0最左边,p3最右边,p2仅此p3右,p1仅此p2右 p0-p1
            ff2 = fismax(p3[f3],p2,f2);
            if(ff2){
                ff1 = fismax(p2[ff2],p1,f1);
                if(ff1) ans = max(ans,p1[ff1]-p0[1]);
            }
            //2.po最左边,p1仅次p0左,p3最有,p2仅存p3右 p1-p2
            ff1 = fismin(p0[1],p1,f1);
            ff2 = fismax(p3[f3],p2,f2);
            if(ff1&&ff2){
                ans = max(ans,p2[ff2]-p1[ff1]);
            }
            //3.p0左,p1仅此左,p2仅此左,p3最右
            ff1 = fismin(p0[1],p1,f1);
            if(ff1){
                ff2 = fismin(p1[ff1],p2,f2);
                if(ff2) ans = max(ans,p3[f3]-p2[ff2]);
            }

            if(ans<0) cout<<-1<<endl;
            else cout<<ans-1<<endl;
        }else{
            cout<<-1<<endl;
        }
    }
}
View Code

C.序列

题意:初始长为 n 的 0 序列, 进行m次操作。每次操作给出区间 (l,r) ,将编号为奇数的序列 区间内的数字全部改成 第i次 操作的 i .同时在每一次操作前,把所有的序列复制一份。(如果还没理解题意,可以看下原题样例解析)

求每次操作后的极大连续段的个数总和。

思路:计数问题:由于是统计极大连续段(连续子区间)个数,所以我们可以 像dp计数一样,记录 以 x 位置结束(右端)的连续子区间个数 f [x]。比如初始时 长为 3的0序列,f[3] = 1;

对于每次区间更改:我们可以知道 (l-1) 与l ,(r+1)与r的值肯定不一样,所以每次修改操作后 f[l-1] 与 f [r]的贡献值会增大,而增加的个数则是倍增的个数,即第i次操作时 2^(i-1)。

对于没有修改的位置的贡献,由于每次倍增,所以统计个数时就将其乘以2.

最后统计答案,就把所有位置的贡献相加即可。

技术图片
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2019;
const ll mod=20050321;
int n,m;
ll f[maxn],p[maxn];
//定义fx表示的序列中,存在极大连续段右端点为x的序列个数
//x = n,a_x != a_x+1,
//每一次不同的统计在于从1-n此时所有的值的贡献
//由于每次对l,r操作后的值不同,又每次更新2^(i-1)个序列贡献,所以fr = fr + 2^(i-1);
//由于1~i-1与r+1~n的部分元素没有改变,所以贡献翻倍
int main()
{
    cin>>n>>m;
    //预处理2^(i-1)
    p[0]=1;for(int i=1;i<=m;i++)p[i]=(p[i-1]*2)%mod;
    f[n]=1;
    for(int i=1;i<=m;i++)
    {
        int l,r;
        cin>>l>>r;
      
        for(int j=1;j<l-1;j++) f[j]=(f[j]*2)%mod;
        for(int j=r+1;j<=n;j++) f[j]=(f[j]*2)%mod;

        f[l-1]=(f[l-1]+p[i-1])%mod;
        f[r]=(f[r]+p[i-1])%mod;
        
        ll ans=0;
        for(int j=1;j<=n;j++) ans=(ans+f[j])%mod;
        cout<<ans<<endl;
    }
    return 0;
}
View Code

 

 

以上是关于Comet OJ - Contest #13 补题题解的主要内容,如果未能解决你的问题,请参考以下文章

Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集

Comet OJ - Contest #1

Comet OJ Contest #3

Comet OJ - Contest #15题解

Comet OJ - Contest #14题解

Comet OJ Contest #2