03_数据的特征预处理

Posted hp-lake

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了03_数据的特征预处理相关的知识,希望对你有一定的参考价值。

03 数据特征预处理

特征的预处理

特征的预处理

  1. 定义:通过特定的统计方法(数学方法),将数据转换成算法要求的数据。
  2. 数值型数据:标准缩放
    • 归一化
    • 标准化
  3. 类别性数据: one-hot编码
  4. 时间类型: 时间的切分

归一化

  1. 定义: 通过对原始数据的变化把数据映射到 [0,1] 之间
    • 优点:多个特征时,某一个特征对最终结果不会造成更大的影响 (同一个维度)
    • 缺点:容易受到极大值和极小值的影响

技术图片
技术图片

标准化

  1. 定义: 将原始数据变换为均值为0标准差为1的范围内
    • 如果出现异常点,由于具有一定的数据量,少量的异常点对于平均值的影响并不大,从而方差改变较小
    • 在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。
      技术图片
from sklearn.preprocessing import MinMaxScaler, StandardScaler
def mm():
    """
    归一化预处理
    :return:None
    """
    mm = MinMaxScaler()
    data = mm.fit_transform([[90, 2, 10, 40], [60, 4, 15, 45], [75, 3, 13, 46]])
    print(data)


def stand():
    """
    标准化预处理
    :return: None
    """
    st = StandardScaler()
    data = st.fit_transform([[90, 2, 10, 40], [60, 4, 15, 45], [75, 3, 13, 46]])
    print(data)


if __name__ == '__main__':
    mm()
    print('*' * 50)
    stand()

缺失值的处理

  1. 缺失值的处理方法
    • 删除: 如果每列或者行数缺失值达到一定的比例,建议放弃整行或者整列
    • 插补: 通过缺失值每行或者每列(特征值)的平均值、中位数来填补
  2. sklearn缺失值API: sklearn.preprocessing.Imputer # impute 归咎于
import numpy as np
from sklearn.preprocessing import Imputer


def im():
    """
    缺失值处理
    :return: None
    """
    # NaN, nan都可以
    im = Imputer(missing_values='NaN', strategy='mean', axis=0)  # axis=0 列,可以记忆0是竖着圈
    data = im.fit_transform([[1, 2], [np.nan, 3], [7, 6]])
    print(data)
    return None


if __name__ == '__main__':
    im()
  1. 关于np.nan(np.NaN)
    • numpy的数组中可以使用np.nan来代替缺失值,属于float类型
    • 如果是文件中的一些缺失值,可以替换成nan,通过np.array转化成float型的数组即可

以上是关于03_数据的特征预处理的主要内容,如果未能解决你的问题,请参考以下文章

Faster 情感分析-task03

学渣的逆袭のPython机器学习--Day_03

1.3_数据的特征预处理

处理屏幕旋转上的片段重复(带有示例代码)

04_特征工程

JSP基础