[AtCoder2272] Xor Sum

Posted darthvictor

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[AtCoder2272] Xor Sum相关的知识,希望对你有一定的参考价值。

题目

原题地址

解说

自己选的分享题自己看了半天不会
大致题意就是给出正整数(N),求出整数对(u)(v(0≤u,v≤N))的数目,使得存在两个非负整数(a)(b)满足(a xor b = u)(a + b= v)。这里,(xor)表示按位异或。 要求对答案取模(10^9 + 7)
先用下面的代码暴力了一遍:

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;
	cin>>n;
	for(int i=0;i<=n;i++){
		int ans=0;
		/*cout<<i<<‘:‘<<endl;*/
		for(int v=0;v<=i;v++){
			for(int u=0;u<=v;u++){
				for(int a=0;a<=v/2;a++){
					if(((v-a)^a)==u){
						ans++;
						/*cout<<v<<‘ ‘<<u<<endl;*/
						break;
					}
				}
			}
		}
		cout<<ans<<endl;
	}
}

之后就像研究数列一样研究了半天,发现规律(a_0=1,a_1=2),之后(a_n=a_{n/2}+a_{(n-1)/2}+a_{(n-2)/2})
那就按照这个思路写吧。这就是一个简单的递推了还不简单?由于(10^{18})太大数组开不下,只能用(map)。之后就递归还是(for)循环就随意了。
大功告成!但是好像只观察出了规律没证明……
看了半天还是不会证明……白嫖一个吧……

其实在本质上看的二进制操作也比较好理解,要得到小于等于(n)的数,第一种操作是(n/2)即先将(n>>1),然后(n<<1),这样最后得到的数肯定不会超过(n),第二种操作是(((n-1)/2)*2+((n-1)/2)),第三种操作是(((n-2)/2)*2+1 + ((n-2)/2)*2+1),三种操作目的很明显,完成递推且数对数对(a,b)进行的操作不能使(a+b)出现大于(n)的情况。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
map<ll,ll> a; 
ll dfs(ll x){
	if(a[x]) return a[x];
	a[x]=(dfs(x/2)+dfs((x-1)/2)+dfs((x-2)/2))%mod;
	return a[x];
}
int main(){
	a[0]=1;
	a[1]=2;
	ll n;
	scanf("%lld",&n);
	ll ans=dfs(n);
	printf("%lld",ans);
	return 0;
} 

幸甚至哉,歌以咏志。






以上是关于[AtCoder2272] Xor Sum的主要内容,如果未能解决你的问题,请参考以下文章

找规律ARC 066D Xor Sum AtCoder - 2272

找规律ARC 066D Xor Sum AtCoder - 2272

AT2272 [ARC066B] Xor Sum 题解

AT2272 [ARC066B] Xor Sum 题解

Xor Sum 2 / AtCoder - 4142

AtCoder - arc098_b Xor Sum 2(尺取+位运算)