二分+半平面交——poj1279
Posted zsben991126
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二分+半平面交——poj1279相关的知识,希望对你有一定的参考价值。
/* 二分距离,凸包所有边往左平移这个距离,半平面交后看是否还有核存在 */ #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<vector> #include<algorithm> #include<queue> using namespace std; #define N 205 typedef double db; const db eps=1e-8; const db pi=acos(-1.0); int sign(db k){ if (k>eps) return 1; else if (k<-eps) return -1; return 0; } int cmp(db k1,db k2){return sign(k1-k2);} int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内 struct point{ db x,y; point(){} point(db x,db y):x(x),y(y){} point operator + (const point &k1) const{return point(k1.x+x,k1.y+y);} point operator - (const point &k1) const{return point(x-k1.x,y-k1.y);} point operator * (db k1) const{return point(x*k1,y*k1);} point operator / (db k1) const{return point(x/k1,y/k1);} int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)>=0);} point turn90(){return point(-y,x);} db abs(){return sqrt(x*x+y*y);} point unit(){db w=abs(); return point(x/w,y/w);} }; int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);} db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;} db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;} int comp(point k1,point k2){ if(k1.getP()==k2.getP())return sign(cross(k1,k2))>0; return k1.getP()<k2.getP(); } struct line{ point p[2]; line(point k1,point k2){p[0]=k1; p[1]=k2;} point& operator [] (int k){return p[k];} int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>=0;}//k在l左端 point dir(){return p[1]-p[0];} line push(db eps){//向左边平移eps point delta = (p[1]-p[0]).turn90().unit()*eps; return line(p[0]+delta,p[1]+delta); } }; //输入的点是顺时针:ans<0,逆时针:ans>0 bool judge(vector<point> v){ double ans=0; for(int i=1;i<v.size()-1;i++) ans+=cross(v[i]-v[0],v[i+1]-v[0]); return ans>0; } point getLL(point k1,point k2,point k3,point k4){ db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2); } point getLL(line k1,line k2){return getLL(k1[0],k1[1],k2[0],k2[1]);} int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;} int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;} int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}//k1,k2交点在 k3 左端 int operator<(line k1,line k2){//按极角排序,角度相同的从左到右排 if(sameDir(k1,k2))return k2.include(k1[0]); return comp(k1.dir(),k2.dir()); } vector<line> getHL(vector<line> L){ // 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针 sort(L.begin(),L.end()); deque<line> q; for (int i=0;i<(int)L.size();i++){ if (i&&sameDir(L[i],L[i-1])) continue; while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back(); while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front(); q.push_back(L[i]); } while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back(); while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front(); vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]); return ans; } vector<point>v; vector<line>L,LL; int n; int judge(db eps){ LL.clear(); for(int i=0;i<L.size();i++) LL.push_back(L[i].push(eps)); vector<line> res=getHL(LL); if(res.size()>2)return 1; return 0; } int main(){ while(cin>>n && n){ v.clear();L.clear(); for(int i=1;i<=n;i++){ point t;cin>>t.x>>t.y; v.push_back(t); } for(int i=0;i<v.size();i++) L.push_back(line(v[i],v[(i+1)%v.size()])); db l=0,r=1e9,ans,mid; while(r-l>eps){ mid=(l+r)/2; if(judge(mid)) l=mid,ans=mid; else r=mid; } printf("%.6lf ",ans); } }
以上是关于二分+半平面交——poj1279的主要内容,如果未能解决你的问题,请参考以下文章