编程面试的10大算法概念汇总

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了编程面试的10大算法概念汇总相关的知识,希望对你有一定的参考价值。

           以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念。由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍。本文将从Java的角度看问题,包含下面的这些概念:

1. 字符串
2. 链表
3. 树
4. 图
5. 排序
6. 递归 vs. 迭代
7. 动态规划
8. 位操作
9. 概率问题
10. 排列组合

1. 字符串

如果IDE没有代码自动补全功能,所以你应该记住下面的这些方法。

toCharArray() // 获得字符串对应的char数组
Arrays.sort()  // 数组排序
Arrays.toString(char[] a) // 数组转成字符串
charAt(int x) // 获得某个索引处的字符
length() // 字符串长度
length // 数组大小

 

2. 链表

在Java中,链表的实现非常简单,每个节点Node都有一个值val和指向下个节点的链接next。

class Node {
	int val;
	Node next;

	Node(int x) {
		val = x;
		next = null;
	}
}

链表两个著名的应用是栈Stack和队列Queue。

栈:

class Stack{
	Node top; 

	public Node peek(){
		if(top != null){
			return top;
		}

		return null;
	}

	public Node pop(){
		if(top == null){
			return null;
		}else{
			Node temp = new Node(top.val);
			top = top.next;
			return temp;	
		}
	}

	public void push(Node n){
		if(n != null){
			n.next = top;
			top = n;
		}
	}
}

队列:

class Queue{
	Node first, last;

	public void enqueue(Node n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}

	public Node dequeue(){
		if(first == null){
			return null;
		}else{
			Node temp = new Node(first.val);
			first = first.next;
			return temp;
		}	
	}
}

 

3. 树

这里的树通常是指二叉树,每个节点都包含一个左孩子节点和右孩子节点,像下面这样:

class TreeNode{
	int value;
	TreeNode left;
	TreeNode right;
}

下面是与树相关的一些概念:

  1. 平衡 vs. 非平衡:平衡二叉树中,每个节点的左右子树的深度相差至多为1(1或0)。
  2. 满二叉树(Full Binary Tree):除叶子节点以为的每个节点都有两个孩子。
  3. 完美二叉树(Perfect Binary Tree):是具有下列性质的满二叉树:所有的叶子节点都有相同的深度或处在同一层次,且每个父节点都必须有两个孩子。
  4. 完全二叉树(Complete Binary Tree):二叉树中,可能除了最后一个,每一层都被完全填满,且所有节点都必须尽可能想左靠。

译者注:完美二叉树也隐约称为完全二叉树。完美二叉树的一个例子是一个人在给定深度的祖先图,因为每个人都一定有两个生父母。完全二叉树可以看成是可以有若干额外向左靠的叶子节点的完美二叉树。疑问:完美二叉树和满二叉树的区别?(参考:http://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html

 

4. 图

图相关的问题主要集中在深度优先搜索(depth first search)和广度优先搜索(breath first search)。

下面是一个简单的图广度优先搜索的实现。看更多资料请看

1) 定义GraphNode

class GraphNode{ 
	int val;
	GraphNode next;
	GraphNode[] neighbors;
	boolean visited;

	GraphNode(int x) {
		val = x;
	}

	GraphNode(int x, GraphNode[] n){
		val = x;
		neighbors = n;
	}

	public String toString(){
		return "value: "+ this.val; 
	}
}

2) 定义一个队列Queue

class Queue{
	GraphNode first, last;

	public void enqueue(GraphNode n){
		if(first == null){
			first = n;
			last = first;
		}else{
			last.next = n;
			last = n;
		}
	}

	public GraphNode dequeue(){
		if(first == null){
			return null;
		}else{
			GraphNode temp = new GraphNode(first.val, first.neighbors);
			first = first.next;
			return temp;
		}	
	}
}

3) 用队列Queue实现广度优先搜索

public class GraphTest {

	public static void main(String[] args) {
		GraphNode n1 = new GraphNode(1); 
		GraphNode n2 = new GraphNode(2); 
		GraphNode n3 = new GraphNode(3); 
		GraphNode n4 = new GraphNode(4); 
		GraphNode n5 = new GraphNode(5); 

		n1.neighbors = new GraphNode[]{n2,n3,n5};
		n2.neighbors = new GraphNode[]{n1,n4};
		n3.neighbors = new GraphNode[]{n1,n4,n5};
		n4.neighbors = new GraphNode[]{n2,n3,n5};
		n5.neighbors = new GraphNode[]{n1,n3,n4};

		breathFirstSearch(n1, 5);
	}

	public static void breathFirstSearch(GraphNode root, int x){
		if(root.val == x)
			System.out.println("find in root");

		Queue queue = new Queue();
		root.visited = true;
		queue.enqueue(root);

		while(queue.first != null){
			GraphNode c = (GraphNode) queue.dequeue();
			for(GraphNode n: c.neighbors){

				if(!n.visited){
					System.out.print(n + " ");
					n.visited = true;
					if(n.val == x)
						System.out.println("Find "+n);
					queue.enqueue(n);
				}
			}
		}
	}
}
Output:
value: 2 value: 3 value: 5 Find value: 5
value: 4
 


5. 排序

下面是不同排序算法的时间复杂度,你可以去wiki看一下这些算法的基本思想。

Algorithm Average Time Worst Time Space
冒泡排序 n^2 n^2 1
选择排序 n^2 n^2 1
Counting Sort n+k n+k n+k
Insertion sort n^2 n^2  
Quick sort n log(n) n^2  
Merge sort n log(n) n log(n) depends

另外,这里有一些实现/演示:: Counting sortMergesort、 Quicksort、 InsertionSort

5(1)7种常用的排序算法

1. 快速排序

介绍:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。

步骤:

  1. 从数列中挑出一个元素,称为 “基准”(pivot),
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

排序效果:

技术分享

 

5(2). 归并排序

介绍:

归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用

步骤:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

排序效果:

技术分享

 

5(3). 堆排序

介绍:

堆积排序(Heapsort)是指利用这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

步骤:

(比较复杂,自己上网查吧)

排序效果:

技术分享

 

5(4). 选择排序

介绍:

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。

排序效果:

技术分享

 

5(5). 冒泡排序

介绍:

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

步骤:

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
  3. 针对所有的元素重复以上的步骤,除了最后一个。
  4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

排序效果:

技术分享

 

5(6). 插入排序

介绍:

插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

步骤:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
  5. 将新元素插入到该位置中
  6. 重复步骤2

排序效果:

(暂无)

 

5(7). 希尔排序

介绍:

希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

1、插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率

2、但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位>

排序效果:

技术分享

 

视频: 6分钟演示15种排序算法

6. 递归 vs. 迭代

程序员来说,递归应该是一个与生俱来的思想(a built-in thought),可以通过一个简单的例子来说明。

问题: 有n步台阶,一次只能上1步或2步,共有多少种走法。

步骤1:找到走完前n步台阶和前n-1步台阶之间的关系。

为了走完n步台阶,只有两种方法:从n-1步台阶爬1步走到或从n-2步台阶处爬2步走到。如果f(n)是爬到第n步台阶的方法数,那么f(n) = f(n-1) + f(n-2)。

步骤2: 确保开始条件是正确的。

f(0) = 0;
f(1) = 1;

public static int f(int n){
	if(n <= 2) return n;
	int x = f(n-1) + f(n-2);
	return x;
}

递归方法的时间复杂度是n的指数级,因为有很多冗余的计算,如下:

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)

直接的想法是将递归转换为迭代:

public static int f(int n) {

	if (n <= 2){
		return n;
	}

	int first = 1, second = 2;
	int third = 0;

	for (int i = 3; i <= n; i++) {
		third = first + second;
		first = second;
		second = third;
	}

	return third;
}

对这个例子而言,迭代花费的时间更少,你可能也想看看Recursion vs Iteration

 

7. 动态规划

动态规划是解决下面这些性质类问题的技术:

  1. 一个问题可以通过更小子问题的解决方法来解决(译者注:即问题的最优解包含了其子问题的最优解,也就是最优子结构性质)。
  2. 有些子问题的解可能需要计算多次(译者注:也就是子问题重叠性质)。
  3. 子问题的解存储在一张表格里,这样每个子问题只用计算一次
  4. 需要额外的空间以节省时间。

爬台阶问题完全符合上面的四条性质,因此可以用动态规划法来解决。

public static int[] A = new int[100];

public static int f3(int n) {
	if (n <= 2)
		A[n]= n;

	if(A[n] > 0)
		return A[n];
	else
		A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
	return A[n];
}

 

8. 位操作

位操作符:

OR (|) AND (&) XOR (^) Left Shift (<<) Right Shift (>>) Not (~)
1|0=1 1&0=0 1^0=1 0010<<2=1000 1100>>2=0011 ~1=0

获得给定数字n的第i位:(i从0计数并从右边开始)

public static boolean getBit(int num, int i){
	int result = num & (1<<i);

	if(result == 0){
		return false;
	}else{
		return true;
	}

例如,获得数字10的第2位:

i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

 

9. 概率问题

解决概率相关的问题通常需要很好的规划了解问题(formatting the problem),这里刚好有一个这类问题的简单例子:

一个房间里有50个人,那么至少有两个人生日相同的概率是多少?(忽略闰年的事实,也就是一年365天)

计算某些事情的概率很多时候都可以转换成先计算其相对面。在这个例子里,我们可以计算所有人生日都互不相同的概率,也就 是:365/365 * 364/365 * 363/365 * … * (365-49)/365,这样至少两个人生日相同的概率就是1 – 这个值。

public static double caculateProbability(int n){
	double x = 1; 

	for(int i=0; i<n; i++){
		x *=  (365.0-i)/365.0;
	}

	double pro = Math.round((1-x) * 100);
	return pro/100;

calculateProbability(50) = 0.97

 

10. 排列组合

组合和排列的区别在于次序是否关键。

如果你有任何问题请在下面评论。

参考/推荐资料:
1. Binary tree
2. Introduction to Dynamic Programming
3. UTSA Dynamic Programming slides
4. Birthday paradox
5. Cracking the Coding Interview: 150 Programming Interview Questions and Solutions, Gayle Laakmann McDowell

 

以上是关于编程面试的10大算法概念汇总的主要内容,如果未能解决你的问题,请参考以下文章

独家!全球顶尖对冲基金LeetCode面试题汇总

编程面试过程中常见的10大算法

常用机器学习面试基础概念题汇总

2021 年大厂面试高频架构题汇总(附答案详解)

Java面试题大汇总(附答案)

代码面试最常用的10大算法