PTA 7-23 还原二叉树

Posted veeupup

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PTA 7-23 还原二叉树相关的知识,希望对你有一定的参考价值。

知识点:

  • 根据前序遍历和中序遍历还原二叉树

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。

根据二叉树的性质,如果我们只给出二叉树的一种遍历方式的结果,不能完全确定一颗二叉树,这时的二叉树可能具有多种形态。但是当我们给出一颗二叉树的两种不同遍历方式的时候,就可以完全确定一颗二叉树。

这里以前序遍历和中序遍历为例。
假如我们给出两棵二叉树的前中序遍历分别为

前序遍历:ABDFGHIEC
中序遍历:FDHGIBEAC

  • 由前序遍历的性质,我们可以知道 A 一定是这棵树的根结点
  • 根据中序遍历可知, A 左边的一定是 A 的左子树,A 右边的一定是 A 的右子树
  • 同理,B 为 A 的左子树的根结点……
  • 如此递归下去就可以生成一颗确定的二叉树

由此,我们就可以写出递归的还原二叉树的代码:

#include <iostream>
#include <string>
using namespace std;

struct node {
    char data;
    node *left, *right;
    node(char _data): data(_data), left(NULL), right(NULL) {}
};

int n;  // 总结点数目
string preOrder, inOrder;

node *createTree(int preL, int preR, int inL, int inR) {
    if(preL > preR)
        return NULL;
    char nowChar = preOrder[preL];
    node *root = new node(nowChar);
    int pos = inOrder.find(nowChar);
    int len = pos - inL;    // 左子树的长度
    root->left = createTree(preL + 1, preL + len, inL, pos - 1);
    root->right = createTree(preL + len + 1, preR, pos + 1, inR);
    return root;
}

int getHeight(node *root) {
    if(root == NULL)
        return 0;
    else
        return max(getHeight(root->left), getHeight(root->right)) + 1;
}

int main()
{
    cin >> n >> preOrder >> inOrder;
    node *root = createTree(0, preOrder.size()-1, 0, inOrder.size() - 1);
    printf("%d", getHeight(root));
    return 0;
}


以上是关于PTA 7-23 还原二叉树的主要内容,如果未能解决你的问题,请参考以下文章

7-23 还原二叉树 (25分)

7-23 还原二叉树(25 分)

PTA 7-5 完全二叉树的层序遍历

PTA 7-5 完全二叉树的层序遍历

PTA 7-5 完全二叉树的层序遍历

PTA 7-5 完全二叉树的层序遍历