[Mathematics][Linear Algebra] The Rotation of the Base Vector in 3 dimensions

Posted raymondjiang

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Mathematics][Linear Algebra] The Rotation of the Base Vector in 3 dimensions相关的知识,希望对你有一定的参考价值。

Rotation:

  Provided a vector $vec{S}$,considering rotating the orthogonal base vectors ${hat{e_1},hat{e_2},hat{e_3}}$ into new orthogonal base vectors ${ ilde{e_1}, ilde{e_2}, ilde{e_3}}$, such that $ ilde{e_3}=frac{vec{S}}{left|vec{S} ight|}$, and these are under the conventional right-hand axises system.

Conclusion:

$cosalpha = frac{vec{S}_x}{left|vec{S} ight|}$,

$coseta = frac{vec{S}_y}{left|vec{S} ight|}$,

$cosgamma = frac{vec{S}_z}{left|vec{S} ight|}$,

$$ left[egin{matrix} cosgamma & cosalpha & cos eta \ coseta & cosgamma & cos alpha\ cosalpha & cos eta & cosgammaend{matrix} ight] left[egin{matrix} hat{e_1}\ hat{e_2}\ hat{e_3}end{matrix} ight] = left[egin{matrix} ilde{e_1}\ ilde{e_2}\ ilde{e_3}end{matrix} ight] $$

 

Deduction:

  Considering the unit vector in the direction of $vec{S}$, $vec{u}=frac{vec{S}}{left|vec{S} ight|}$.

  Then it‘s clear that $vec{u}=cosalpha hat{e_1}+coseta hat{e_2} + cosgamma hat{e_3}$. Thus $ ilde{e_3}=cosalpha hat{e_1}+coseta hat{e_2} + cosgamma hat{e_3}$.

  And the difference between the relationship of $hat{e_i}$ and $ ilde{e_i}$, ($i = 1,2,3$) is just the subindex. So we can quick derive the other two by substituting the subnumbers, and after careful deduction, we get above equation, and we can convince ourselves by checking the determinant of the roration matrix to be 1.

以上是关于[Mathematics][Linear Algebra] The Rotation of the Base Vector in 3 dimensions的主要内容,如果未能解决你的问题,请参考以下文章

线性代数导论 | Linear Algebra 课程

811 - Hannah Fry The mathematics of love

sh Linux.Bash.Numbers.Mathematics

Mathematics Base - Tensor

Mathematics slides

Consideration about improving mathematics study