TidyQuant 动量策略

Posted amosding

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TidyQuant 动量策略相关的知识,希望对你有一定的参考价值。

 

 

 

 

 

library(stringr)

szcode=read.table("clipboard",header=T)#上证代码
sccode=read.table("clipboard",header=T)#深证代码
zxcode=read.table("clipboard",header=T)#中小代码

code=paste0(szcode[,1],".ss")
Z=paste0("A",1:length(code))
price=list()
for(i in 1:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 57:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-1]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 499:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-1]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 500:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 500:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 807:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-3]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 957:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 1123:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-3]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 1162:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

library(stringr)

szcode=read.table("clipboard",header=T)#上证代码
sccode=read.table("clipboard",header=T)#深证代码
zxcode=read.table("clipboard",header=T)#中小代码

code=paste0(szcode[,1],".ss")
Z=paste0("A",1:length(code))
price=list()
for(i in 1:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 57:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-1]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 499:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-1]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 500:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 500:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 807:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-3]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 957:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-2]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 1123:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-3]]=monthlyReturn(Cl(na.approx(STOCK)))
}

for(i in 1370:length(code)){
  name=code[i]
  from=szcode[i,3]
  setSymbolLookup(STOCK=list(name=name,src=‘yahoo‘))
  getSymbols("STOCK",from=from,to="2020-01-01")
  price[[i-8]]=monthlyReturn(Cl(na.approx(STOCK)))
}

p=price[[1]]
for(i in 2:length(price)){
  a=price[[i]]
  p=merge.xts(p,a,join="outer")
}

pp=tk_tbl(p)
ppp=tk_xts(pp,silent=T)
m=pp %>%
  tq_mutate(mutate_fun = rollapply,
            width      = 10,
            FUN        = sum,
            by.column  = TRUE,
            col_rename = paste0("history",1:1430))
mm=tk_xts(m,silent=T)
history=mm[,1431:2860]
return=mm[,1:1430]
x=merge.xts(history,return,type="outer")
h=na.approx(x[,1:1430])
r=na.approx(x[,1431:2860])
cr=vector()
for(i in 1:nrow(h)){
  a=0
  for(j in 1:ncol(h)){
    if(h[i,j]>quantile(h[i,],0.9,na.rm=T)){
      a=a+r[i+1,j]
    }
    cr[i]=a/ncol(h)
  }
}

  

 

以上是关于TidyQuant 动量策略的主要内容,如果未能解决你的问题,请参考以下文章

Python 动量交易策略分析阿里巴巴股票

使用深度神经网络提升时间序列动量策略

[交易策略]时间序列动量

CTA策略之钱德动量摆动(CMO)

如何使用Orca开发量化策略?

利用深度神经网络增强时间序列动量策略