mask-rcnn解读:clip_boxes_graph()

Posted tangjunjun

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mask-rcnn解读:clip_boxes_graph()相关的知识,希望对你有一定的参考价值。

此函数是利用deltas对box修正,我并没有详细说明,若有问题,欢迎留言交流:


def clip_boxes_graph(boxes, window):
"""
boxes: [N, (y1, x1, y2, x2)]
window: [4] in the form y1, x1, y2, x2
"""
# Split
wy1, wx1, wy2, wx2 = tf.split(window, 4)
y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
# Clip
y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
clipped.set_shape((clipped.shape[0], 4))
return clipped

以上是关于mask-rcnn解读:clip_boxes_graph()的主要内容,如果未能解决你的问题,请参考以下文章

mask-rcnn解读:clip_boxes_graph()

mask-rcnn代码解读:display(self)函数的解析

mask-rcnn代码解读:mask_iou的计算

mask-rcnn代码解读:rpn_feature_maps数据的处理

『计算机视觉』Mask-RCNN_关键点检测分支(待续)

Mask-RCNN : 代码使用