keras使用函数功能

Posted shencangzaiyunduan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了keras使用函数功能相关的知识,希望对你有一定的参考价值。

1. keras.engine.input_layer.Input()

def Input(shape=None, batch_shape=None,
  name=None, dtype=None, sparse=False,
  tensor=None):

用来实例化一个keras tensor

 

2. class Dense(Layer):  

keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer=‘glorot_uniform‘, bias_initializer=‘zeros‘, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

def __init__(self, units,
  activation=None,
  use_bias=True,
  kernel_initializer=‘glorot_uniform‘,
  bias_initializer=‘zeros‘,
  kernel_regularizer=None,
  bias_regularizer=None,
  activity_regularizer=None,
  kernel_constraint=None,
  bias_constraint=None,
  **kwargs):

Dense 是一个类,用来regular densely-connected NN layer.

 

3. from keras.models import Sequential, Model

4. from keras.utils.np_utils import to_categorical

categorical_labels = to_categorical(int_labels, num_classes=None)

说明:

例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0。

EXAMPLE:

假设y_test为100x1的向量,100表示样本数,标签为标量,这时候将标签扩充为10维的向量,即:y_test为100x10。10维向量中,值为1表示这个样本属于这个类别,其他9个地方的值都为0。

y_test = to_categorical(y_test, 10)

 

以上是关于keras使用函数功能的主要内容,如果未能解决你的问题,请参考以下文章

用条件在keras中实现自定义丢失函数

使用 Tensorflow 2 的 Keras 功能 API 时传递 `training=true`

具有推理功能的 TensorFlow + Keras 多 GPU 模型

Keras:具有多个参数的 Lambda 层函数

Keras 2:在“合并”图层中使用lambda函数

如何在 Keras 中使用附加功能和词嵌入?