多项式插值
Posted guliangt
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多项式插值相关的知识,希望对你有一定的参考价值。
1.多项式插值函数
%%多项式插值 %%说明:precision为精度,越大则图像越精细,attribute是属性值,当未知函数表达式但已知函数值时为1,否则为0 function PI = Polynomial_interpolation(f,X,precision,attribute) X = sort(X); if attribute == 0 [m,n] = size(X);MAX = max([m,n]); X = reshape(X,1,MAX);error = []; for i = 1:MAX Y(i) = subs(f,X(i)); end Y_value =double(Y); a = min(X);b = max(X); t = a:(b-a)/precision:b; T = zeros(1,precision+1); Yreal = subs(f,t); Coe = vpa(Polynomial_interpolation_cofficient(f,X,attribute),4); for i = 1:1:precision+1 T(i) = Polynomial_value(Coe,t(i)); end for i=1:MAX error(i) = abs(Y(i)-Polynomial_value(Coe,X(i))); end %%作图 h=figure; set(h,‘color‘,‘w‘); [hAx,hLine1,hLine2] = plotyy(t,T,X,Y,‘plot‘,‘stem‘); title(‘多项式插值‘); xlabel(‘Variable x‘); ylabel(hAx(1),‘Variable‘); ylabel(hAx(2),‘Variable‘); grid on hold on plot(t,Yreal); legend(‘Yreal:真实图像‘,‘Y:拟合多项式图像‘,‘T:实际数据‘); %%显示坐标 for i = 1:MAX text(X(i),Y_value(i),[‘(‘,num2str(X(i)),‘,‘,num2str(Y_value(i)),‘)‘],‘color‘,[0.02 0.79 0.99]); end disp(‘误差值为‘);error elseif attribute ==1 [m,n] = size(X);MAX = max([m,n]);X = reshape(X,1,MAX);f = reshape(f,1,MAX); a = min(X);b = max(X); t = a:(b-a)/precision:b; T = zeros(1,precision+1); Coe = vpa(Polynomial_interpolation_cofficient(f,X,attribute),4); for i = 1:1:precision+1 T(i) = Polynomial_value(Coe,t(i)); end h=figure; set(h,‘color‘,‘w‘); plot(t,T,‘b‘,X,f,‘g*‘); grid on title(‘多项式插值‘); xlabel(‘Variable x‘); ylabel(‘Variable y‘); legend(‘Y:拟合多项式图像‘,‘T:已知数据‘); for i = 1:MAX text(X(i),f(i),[‘(‘,num2str(X(i)),‘,‘,num2str(f(i)),‘)‘],‘color‘,[0.02 0.79 0.99]); end end syms x; PI=vpa(Polynomial_value(Coe,x),4); end
2.多项式函数值
%%多项式函数值 function PV = Polynomial_value(P,t) [m,n] = size(P); MAX = max([m,n]); sum = 0; for i = MAX:-1:1 sum = sum+P(i)*Power_function(i-1,t); end PV = sum; %%幂函数 function pf = Power_function(index,t) pf = t.^index; end end
3.多项式系数
%%此函数可得出给定节点数减一的多项式系数 %%说明:attribute是属性值,当未知函数表达式但已知函数值时为1,否则为0 function PIC = Polynomial_interpolation_cofficient(f,X,attribute) global MAX;global m;global n;global i; X = sort(X); if attribute == 0 [m,n]=size(X);MAX=max([m,n]); X = reshape(X,1,MAX); A = zeros(MAX,MAX);Y = zeros(1,MAX); for i = 1:MAX A(:,i) = (X‘).^(i-1); Y(i) = subs(f,X(i)); end Coefficient = vpa(reshape(A(Y‘),1,MAX),4); elseif attribute == 1 [m,n]=size(X);MAX=max([m,n]);PIC=cell(1,MAX+1); X = reshape(X,1,MAX); A = zeros(MAX,MAX);Y = reshape(f,1,MAX); for i = 1:MAX A(:,i) = (X‘).^(i-1); end Coefficient = vpa(reshape(A(Y‘),1,MAX),4); end disp(‘最高次数n=‘); MAX-1 PIC=Coefficient; %%多项式函数值 function PV = Polynomial_value(P,t) [m,n] = size(P); MAX = max([m,n]); sum = 0; for i = MAX:-1:1 sum = sum+P(i)*Power_function(i-1,t); end PV = sum; %%幂函数 function pf = Power_function(index,t) pf = t.^index; end end end
4.一个例子
clear all clc precision=500; X=1:1:6; R1=reshape(rand(6),1,36); R2=reshape(rand(12),1,144); R=zeros(1,6); for i=1:6 R(i)=R1(6*i)*R2(24*i)*100; end %%已知函数 disp(‘已知函数的多项式拟合‘); syms x; f=x*sin(x^2)*exp(-x^2)+log(abs(sin(x))); Polynomial_interpolation(f,X,precision,0) %%已知函数数值 disp(‘已知函数值的多项式拟合‘); Polynomial_interpolation(R,X,precision,1)
结果
已知函数的多项式拟合 最高次数n= ans = 5 误差值为 error = 1.0e-08 * 0.0066 0.0092 0.0027 0.0473 0.1507 0.3463 ans = 0.1248*x^5 - 2.291*x^4 + 15.64*x^3 - 48.61*x^2 + 66.56*x - 31.29 已知函数值的多项式拟合 最高次数n= ans = 5 ans = - 1.993*x^5 + 31.02*x^4 - 175.7*x^3 + 444.1*x^2 - 491.6*x + 201.5
以上是关于多项式插值的主要内容,如果未能解决你的问题,请参考以下文章
解题报告多项式求值与插值(拉格朗日插值)(ACM / OI)