[POI 2014]PTA-Little Bird

Posted navi-awson

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[POI 2014]PTA-Little Bird相关的知识,希望对你有一定的参考价值。

Description

题库连接

给你 (n) 棵树,第 (i) 棵树的高度为 (d_i)。有一只鸟从 1 号树出发,每次飞跃不能超过 (k) 的距离。若飞到下一棵树的高度大于等于这一棵树那么耗费一点体力,否则不会。问你飞到第 (n) 棵树耗费最少体力为多少。多测,测试组数 (q)

(1leq nleq 10^6,1leq qleq 25)

Solution

朴素的 (O(n^2)) DP 是很容易想到的,记 (f_i) 表示飞到 (i) 上的最小花费。那么,(f_i=minlimits_{i-jleq k} f_j+[d_igeq d_j])

容易发现,最优的答案一定可以从所有满足条件的 (j)(f_j) 最小的地方转移过来,即 (f_i) 的值只可能是 (minlimits_{i-jleq k} f_j)(minlimits_{i-jleq k} f_j+1)

那么可以开一个单调队列维护满足条件的 (j),并且满足 (f) 单调;在 (f) 相同的同时 (d) 单调递减(从越高的树转移越优)。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+5;

int n, t, a[N], k, q[N], head, tail, f[N];

int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &k); 
        q[head = tail = 1] = 1;
        for (int i = 2; i <= n; i++) {
            while (i-q[head] > k) ++head;
            f[i] = f[q[head]]+(a[q[head]] <= a[i]);
            while (head <= tail && (f[i] < f[q[tail]] || (f[i] == f[q[tail]] && a[i] >= a[q[tail]]))) --tail;
            q[++tail] = i;
        }
        printf("%d
", f[n]);
    }
    return 0;
}

以上是关于[POI 2014]PTA-Little Bird的主要内容,如果未能解决你的问题,请参考以下文章

P3572 [POI2014]PTA-Little Bird

luogu P3572 [POI2014]PTA-Little Bird 单调队列优化dp

luogu P3572 [POI2014]PTA-Little Bird 单调队列优化dp

ybtoj 单调队列课堂过关 例题3luogu P3572 [POI2014]耗费体力 & PTA-Little Bird

bzoj 3831: [Poi2014]Little Bird

BZOJ3831[Poi2014]Little Bird 单调队列