Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)
Posted fengqiao
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)相关的知识,希望对你有一定的参考价值。
#自动下载并加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) import tensorflow as tf # truncated_normal: https://www.cnblogs.com/superxuezhazha/p/9522036.html def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #conv2d: https://blog.csdn.net/qq_30934313/article/details/86626050 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘) #max_pool: https://blog.csdn.net/coder_xiaohui/article/details/78025379 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding=‘SAME‘) x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) keep_prob = tf.placeholder("float") #卷积池化1 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) #卷积池化2 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #全连接层1 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #dropout:https://blog.csdn.net/yangfengling1023/article/details/82911306 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #全连接层2 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #误差优化 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #计算准确率 correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #训练 with tf.Session() as sess: init = tf.initialize_all_variables() sess.run(init) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0}) print ("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print ("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
以上是关于Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)的主要内容,如果未能解决你的问题,请参考以下文章
机器学习(TensorFlow)---Fashion MNIST数据集使用范例(计算机视觉)
tensorflow serving 之minist_saved_model.py解读