poj 2155 Matrix
Posted zjxxcn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 2155 Matrix相关的知识,希望对你有一定的参考价值。
Matrix
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 36547 | Accepted: 13109 |
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
Source
二维线段树,不需要懒标记。
修改和查询都是$O(logn*logn)$。
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<cmath> 5 #include<algorithm> 6 using namespace std; 7 #define lch (x<<1) 8 #define rch (x<<1|1) 9 #define mid (l+r)/2 10 int const N=1000+10; 11 int t[N<<2][N<<2],cas,n,m,ans; 12 void insert(int o,int x,int l,int r,int y1,int y2){ 13 if(y1<=l && r<=y2) { 14 t[o][x]^=1; 15 return; 16 } 17 if(y1<=mid) insert(o,lch,l,mid,y1,y2); 18 if(y2>mid) insert(o,rch,mid+1,r,y1,y2); 19 } 20 void update(int x,int l,int r,int x1,int y1,int x2,int y2){ 21 if(x1<=l && r<=x2){ 22 insert(x,1,1,n,y1,y2); 23 return ; 24 } 25 if(x1<=mid) update(lch,l,mid,x1,y1,x2,y2); 26 if(x2>mid) update(rch,mid+1,r,x1,y1,x2,y2); 27 } 28 void queryy(int o,int x,int l,int r,int rr){ 29 ans^=t[o][x]; 30 if(l==r) return ; 31 if(rr<=mid) queryy(o,lch,l,mid,rr); 32 else queryy(o,rch,mid+1,r,rr); 33 } 34 void queryx(int x,int l,int r,int ll,int rr){ 35 queryy(x,1,1,n,rr); 36 if(l==r) return ; 37 if(ll<=mid) queryx(lch,l,mid,ll,rr); 38 else queryx(rch,mid+1,r,ll,rr); 39 } 40 int main(){ 41 scanf("%d",&cas); 42 int check=0; 43 while (cas--){ 44 if(check) printf(" "); 45 scanf("%d%d",&n,&m); 46 memset(t,0,sizeof(t)); 47 while (m--){ 48 char s[2]; 49 scanf("%s",s); 50 if(s[0]==‘Q‘){ 51 int x,y; 52 scanf("%d%d",&x,&y); 53 ans=0; 54 queryx(1,1,n,x,y); 55 printf("%d ",ans); 56 }else { 57 int x1,y1,x2,y2; 58 scanf("%d%d%d%d",&x1,&y1,&x2,&y2); 59 update(1,1,n,x1,y1,x2,y2); 60 } 61 } 62 check=1; 63 } 64 return 0; 65 }
以上是关于poj 2155 Matrix的主要内容,如果未能解决你的问题,请参考以下文章