FM/FFM算法

Posted blowinginthewind

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FM/FFM算法相关的知识,希望对你有一定的参考价值。

一、数据格式

1.1 libffm数据格式定义

为了使用FM/FFM方法,所有的特征必须转换成“field_id:feat_id:value”类型的libffm格式,field_id代表特征所属field的编号,feat_id是特征编号,value是特征的值。注意第一列插入为target值。

数值型的特征比较容易处理,只需分配单独的field和feat编号。

类别型特征需要经过One-Hot编码成数值型,编码产生的所有特征同属于一个field,而特征的值只能是0或1,注意类别特征编码时忽略0值(同一个类别field一般对应一个fea,但也可能对应多个fea);

特别地,如用户浏览/购买品类,有多个品类id且用一个数值衡量用户浏览或购买每个品类商品的数量。这类特征按照categorical特征处理,不同的只是特征的值不是0或1,而是代表用户浏览或购买数量的数值。按前述方法得到field_id之后,再对转换后特征顺序编号,得到feat_id,特征的值也可以按照之前的方法获得。

【举例说明】

技术图片

可编码为

技术图片

 

1.2 libffm数据格式转换

核心类:

class df2libffm:
    def __init__(self, feas_n, feas_c, feas_oh):
        self.catdict = {}
        for x in feas_n: self.catdict[x] = 0    #数值型特征
        for x in feas_c: self.catdict[x] = 1    #类别单值型特征
        for x in feas_oh: self.catdict[x] = 2   #one-hot后的类别多值型特征
        self.field_ids = {}
        self.feat_ids = {}
        self.fieldcode = 0
        self.featcode = 0
    
    #初始化
    def build(self, train, test):
        df = pd.concat([train[feas_n+feas_c],test[feas_n+feas_c]],axis=0)
        for n, r in enumerate(range(len(df))):
            datarow = df.iloc[r].to_dict()
            for i, x in enumerate(self.catdict.keys()):
                #数值型特征
                if(self.catdict[x]==0):
                    if(x not in self.field_ids):
                        self.field_ids[x] = self.fieldcode
                        self.fieldcode +=1
                        self.feat_ids[x] = self.featcode
                        self.featcode +=1
                #类别单值型特征
                if(self.catdict[x]==1):
                    if(x not in self.field_ids):
                        self.field_ids[x] = self.fieldcode
                        self.fieldcode +=1
                        self.feat_ids[x] = {}
                        self.feat_ids[x][datarow[x]] = self.featcode
                        self.featcode +=1
                    elif(datarow[x] not in self.feat_ids[x]):
                        self.feat_ids[x][datarow[x]] = self.featcode
                        self.featcode +=1
                #类别多值型特征
                if(self.catdict[x]==2):
                    if(x.split(_)[0] not in self.field_ids):
                        self.field_ids[x.split(_)[0]] = self.fieldcode
                        self.fieldcode +=1
                        self.feat_ids[x] = self.featcode
                        self.featcode +=1
                        
    #转换
    def gen(self, df, path, dtype):
        with open(path, "w") as text_file:
            for n, r in enumerate(range(len(df))):
                datastring = ""
                datarow = df.iloc[r].to_dict()
                #第一列:target
                if dtype==train: datastring += str(int(datarow[0]))
                if dtype==valid: datastring += str(int(datarow[0]))
                if dtype==test:  datastring += str(int(0))
                #第二列开始:特征编码
                for i, x in enumerate(self.catdict.keys()):
                    if(self.catdict[x]==0):
                        datastring = datastring + " "+str(self.field_ids[x])+":"+ str(self.feat_ids[x])+":"+ str(str(datarow[x]))
                    if(self.catdict[x]==1):
                        datastring = datastring + " "+str(self.field_ids[x])+":"+ str(self.feat_ids[x][datarow[x]])+":1"
                    if(self.catdict[x]==2):
                        if datarow[x]==1:
                            datastring = datastring + " "+str(self.field_ids[x.split(_)[0]])+":"+ str(self.feat_ids[x])+":1"
                datastring += 

                text_file.write(datastring)

【举例说明】

https://github.com/KeenDuang/Duang-Feature-Engineering/blob/master/df2libffm.ipynb

 

Reference:

https://blog.csdn.net/john_xyz/article/details/78933253#%E4%BB%A3%E7%A0%81%E5%AE%9E%E7%8E%B0

https://blog.csdn.net/hiwallace/article/details/81333604

https://www.kaggle.com/scirpus/libffm-generator-lb-280

 

以上是关于FM/FFM算法的主要内容,如果未能解决你的问题,请参考以下文章

坠入深渊的传统之发展——FM、FFM、GBDT+LR

ctr——FM,FFM

搜广推 LR -> POLY2 -> FM -> FFM (从单阶特征到二阶交叉特征的引入及改进)

推荐系统概况:传统CTR深度学习CTR GraphEmbedding多任务学习梳理

推荐系统实践与思考-20201107

以下代码片段的算法复杂度