CNN之池化层tf.nn.max_pool|tf.nn.avg_pool|tf.reduce_mean

Posted liuhuacai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CNN之池化层tf.nn.max_pool|tf.nn.avg_pool|tf.reduce_mean相关的知识,希望对你有一定的参考价值。

摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值、平均值等操作。

均值池化:tf.nn.avg_pool(input,ksize,strides,padding)

最大池化:tf.nn.max_pool(input,ksize,strides,padding)

input:通常情况下是卷积层输出的featuremap,shape=[batch,height,width,channels]

   技术图片              技术图片

  假定这个矩阵就是卷积层输出的featuremap(2通道输出)  他的shape=[1,4,4,2]

ksize:池化窗口大小    shape=[batch,height,width,channels]    比如[1,2,2,1]

strides: 窗口在每一个维度上的移动步长 shape=[batch,stride,stride,channel]  比如[1,2,2,1]

padding:“VALID”不填充  “SAME”填充0

返回:tensor        shape=[batch,height,width,channels]

技术图片

上图是采用的最大池化,取红色框内最大的一个数。

技术图片
import tensorflow as tf
feature_map = tf.constant([
    [[0.0,4.0],[0.0,4.0],[0.0,4.0],[0.0,4.0]],
    [[1.0,5.0],[1.0,5.0],[1.0,5.0],[1.0,5.0]],
    [[2.0,6.0],[2.0,6.0],[2.0,6.0],[2.0,6.0]] ,
    [[3.0,7.0],[3.0,7.0],[3.0,7.0],[3.0,7.0]]
    ])
feature_map = tf.reshape(feature_map,[1,4,4,2])##两通道featuremap输入

##定义池化层
pooling = tf.nn.max_pool(feature_map,[1,2,2,1],[1,2,2,1],padding=VALID)##池化窗口2*2,高宽方向步长都为2,不填充
pooling1 = tf.nn.max_pool(feature_map,[1,2,2,1],[1,1,1,1],padding=VALID)##池化窗口2*2,高宽方向步长都为1,不填充
pooling2 = tf.nn.avg_pool(feature_map,[1,4,4,1],[1,1,1,1],padding=SAME)##池化窗口4*4,高宽方向步长都为1,填充
pooling3 = tf.nn.avg_pool(feature_map,[1,4,4,1],[1,4,4,1],padding=SAME)##池化窗口4*4,高宽方向步长都为4,填充
##转置变形(详细解释参考另一篇博文)
tran_reshape = tf.reshape(tf.transpose(feature_map),[-1,16])
pooling4 = tf.reduce_mean(tran_reshape,1)    ###对行值求平均
with tf.Session() as sess:
    print(featuremap:
,sess.run(feature_map))
    print(**30)
    print(pooling:
,sess.run(pooling))
    print(**30)
    print(pooling1:
,sess.run(pooling1))
    print(**30)
    print(pooling2:
,sess.run(pooling2))
    print(**30)
    print(pooling3:
,sess.run(pooling3))
    print(**30)
    print(pooling4:
,sess.run(pooling4))
‘‘‘
输出结果:
featuremap:
 [[[[ 0.  4.]
   [ 0.  4.]
   [ 0.  4.]
   [ 0.  4.]]

  [[ 1.  5.]
   [ 1.  5.]
   [ 1.  5.]
   [ 1.  5.]]

  [[ 2.  6.]
   [ 2.  6.]
   [ 2.  6.]
   [ 2.  6.]]

  [[ 3.  7.]
   [ 3.  7.]
   [ 3.  7.]
   [ 3.  7.]]]]
******************************
pooling:
 [[[[ 1.  5.]
   [ 1.  5.]]

  [[ 3.  7.]
   [ 3.  7.]]]]
******************************
pooling1:
 [[[[ 1.  5.]
   [ 1.  5.]
   [ 1.  5.]]

  [[ 2.  6.]
   [ 2.  6.]
   [ 2.  6.]]

  [[ 3.  7.]
   [ 3.  7.]
   [ 3.  7.]]]]
******************************
pooling2:
 [[[[ 1.   5. ]
   [ 1.   5. ]
   [ 1.   5. ]
   [ 1.   5. ]]

  [[ 1.5  5.5]
   [ 1.5  5.5]
   [ 1.5  5.5]
   [ 1.5  5.5]]

  [[ 2.   6. ]
   [ 2.   6. ]
   [ 2.   6. ]
   [ 2.   6. ]]

  [[ 2.5  6.5]
   [ 2.5  6.5]
   [ 2.5  6.5]
   [ 2.5  6.5]]]]
******************************
pooling3:
 [[[[ 1.5  5.5]]]]
******************************
pooling4:
 [ 1.5  5.5]

‘‘‘
池化层常用函数及参数

现在我们对代码中的内容加以解释:

padding的规则

  •   padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例)

    技术图片     技术图片 

    输出宽度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5【向上取整=2】

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5【向上取整=2】

    输出的形状[1,2,2,1]

    技术图片    

    技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding=VALID)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
 [[[[ 2.]
   [-1.]]

  [[-1.]
   [ 0.]]]]
‘‘‘
tensorflow中实现(步长2)

    如果strides=[1,3,3,1]的情况又是如何呢?   

    输出宽度:output_width  = (in_width-filter_width+1)/strides_width  =(5-3+1)/3=1

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/3=1

    输出的形状[1,1,1,1],因此输出的结果只有一个

    技术图片

    技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding=VALID)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 2.]]]]
‘‘‘
tensorflow中实现(步长3)

     padding=‘SAME’时,输出的宽度和高度的计算公式(下图gif为例)

    技术图片

    输出宽度:output_width  = in_width/strides_width=5/2=2.5【向上取整3】

    输出高度:output_height = in_height/strides_height=5/2=2.5【向上取整3】

    则输出的形状:[1,3,3,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((3-1)*2+3-5,0)=2

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((3-1)*2+3-5,0)=2

    pad_top = pad_height/2=1

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=1

    pad_right = pad_width-pad_left=1

    技术图片

    技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding=SAME)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 3.]
   [ 1.]
   [-4.]]

  [[ 3.]
   [ 0.]
   [-3.]]

  [[ 4.]
   [-1.]
   [-3.]]]]
‘‘‘
SAME步长2

    如果步长为3呢?补0的规则又如何?

    输出宽度:output_width  = in_width/strides_width=5/3=2

    输出高度:output_height = in_height/strides_height=5/3=2

    则输出的形状:[1,2,2,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((2-1)*3+3-5,0)=1

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((2-1)*3+3-5,0)=1

    pad_top = pad_height/2=0【向下取整】

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=0【向下取整】

    pad_right = pad_width-pad_left=1

    技术图片

 

     

    技术图片
import tensorflow as tf
print(3/2)
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding=SAME)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 2.]
   [-3.]]

  [[ 0.]
   [-3.]]]]
‘‘‘
SAME步长3

    这里借用的卷积中的padding规则,在池化层中的padding规则与卷积中的padding规则一致

 

    

 

 

 

 

 

 

以上是关于CNN之池化层tf.nn.max_pool|tf.nn.avg_pool|tf.reduce_mean的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow 池化层

tensorflow中的池化函数解析

tensorflow中的池化函数解析

TF-池化函数 tf.nnmax_pool 介绍

FPGA教程案例56深度学习案例3——基于FPGA的CNN卷积神经网络之池化层verilog实现

第十五节,利用反卷积技术复原卷积网络各层图像