ROM 装甲板识别 蓝色车识别

Posted fanxiaohao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ROM 装甲板识别 蓝色车识别相关的知识,希望对你有一定的参考价值。

#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include "opencv2/imgproc.hpp"
#include "iostream"
#include "omp.h"

using namespace cv;
using namespace std;
int a = 0;
#define T_ANGLE_THRE 10
#define T_SIZE_THRE 5

void brightAdjust(Mat src, Mat dst, double dContrast, double dBright); //亮度调节函数
void getDiffImage(Mat src1, Mat src2, Mat dst, int nThre); //二值化
vector<RotatedRect> armorDetect(vector<RotatedRect> vEllipse); //检测装甲
void drawBox(RotatedRect box, Mat img); //标记装甲

int main()
{
        Mat frame;
        frame = imread("D:/A.png");

        Size imgSize;
        RotatedRect s;   //定义旋转矩形
        vector<RotatedRect> vEllipse; //定以旋转矩形的向量,用于存储发现的目标区域
        vector<RotatedRect> vRlt;
        vector<RotatedRect> vArmor;
        bool bFlag = false;

        vector<vector<Point> > contour;

        imgSize = frame.size();

        Mat rawImg = Mat(imgSize, CV_8UC3);

        Mat grayImage = Mat(imgSize, CV_8UC1);
        Mat rImage = Mat(imgSize, CV_8UC1);
        Mat gImage = Mat(imgSize, CV_8UC1);
        Mat bImage = Mat(imgSize, CV_8UC1);
        Mat binary = Mat(imgSize, CV_8UC1);
        Mat rlt = Mat(imgSize, CV_8UC1);
        namedWindow("输出");


    
        brightAdjust(frame, rawImg, 1, -120);  //每个像素每个通道的值都减去120
        Mat bgr[3];
        split(rawImg, bgr); //通道分离函数
        bImage = bgr[0];
        gImage = bgr[1];
        rImage = bgr[2];
        
        //如果像素R值-G值大于25,则返回的二值图像的值为255,否则为0
        getDiffImage(bImage, rImage, binary,105);
        dilate(binary, grayImage, Mat(), Point(-1, -1), 3);   //图像膨胀
        erode(grayImage, rlt, Mat(), Point(-1, -1), 1);  //图像腐蚀,先膨胀在腐蚀属于闭运算
        findContours(rlt, contour, RETR_CCOMP, CHAIN_APPROX_SIMPLE); //在二值图像中寻找轮廓
        for (int i = 0; i < contour.size(); i++)
        {
            if (contour[i].size() > 10)  //判断当前轮廓是否大于10个像素点
            {   
                bFlag = true;   //如果大于10个,则检测到目标区域
              //拟合目标区域成为椭圆,返回一个旋转矩形(中心、角度、尺寸)
                s = fitEllipse(contour[i]);
                for (int nI = 0; nI < 5; nI++)
                {
                    for (int nJ = 0; nJ < 5; nJ++)  //遍历以旋转矩形中心点为中心的5*5的像素块
                    {
                        if (s.center.y - 2 + nJ > 0 && s.center.y - 2 + nJ < 328 && s.center.x - 2 + nI > 0 && s.center.x - 2 + nI < 385)  //判断该像素是否在有效的位置
                        {
                            Vec3b v3b = frame.at<Vec3b>((int)(s.center.y - 2 + nJ), (int)(s.center.x - 2 + nI)); //获取遍历点点像素值
                           //判断中心点是否接近白色
                            if (v3b[0] < 200 || v3b[1] < 200 || v3b[2] < 200)
                                bFlag = false;        //如果中心不是白色,则不是目标区域
                        }
                    }
                }
                if (bFlag)
                {
                    vEllipse.push_back(s); //将发现的目标保存
                }
            }

        }
        //调用子程序,在输入的LED所在旋转矩形的vector中找出装甲的位置,并包装成旋转矩形,存入vector并返回
        vRlt = armorDetect(vEllipse);
        for (unsigned int nI = 0; nI < vRlt.size(); nI++) //在当前图像中标出装甲的位置
            drawBox(vRlt[nI], frame);
        imshow("输出", frame);
        waitKey();
        vEllipse.clear();
        vRlt.clear();
        vArmor.clear();
        return 0;
}
//每个通道的数值 - 120,小于零 = 0,大于255则 = 255,用于突出LED灯带所在区域
void brightAdjust(Mat src, Mat dst, double dContrast, double dBright)
{
    int nVal;
    omp_set_num_threads(8);
#pragma omp parallel for

    for (int nI = 0; nI < src.rows; nI++)
    {
        Vec3b* p1 = src.ptr<Vec3b>(nI);
        Vec3b* p2 = dst.ptr<Vec3b>(nI);
        for (int nJ = 0; nJ < src.cols; nJ++)
        {
            for (int nK = 0; nK < 3; nK++)
            {
                //每个像素的每个通道的值都进行线性变换
                nVal = (int)(dContrast * p1[nJ][nK] + dBright);
                if (nVal < 0)
                    nVal = 0;
                if (nVal > 255)
                    nVal = 255;
                p2[nJ][nK] = nVal;
            }
        }
    }
}

void getDiffImage(Mat src1, Mat src2, Mat dst, int nThre)
{
omp_set_num_threads(8);
#pragma omp parallel for

    for (int nI = 0; nI < src1.rows; nI++)
    {
        uchar* pchar1 = src1.ptr<uchar>(nI);
        uchar* pchar2 = src2.ptr<uchar>(nI);
        uchar* pchar3 = dst.ptr<uchar>(nI);
        for (int nJ = 0; nJ < src1.cols; nJ++)
        {
            if (pchar1[nJ] - pchar2[nJ] > nThre) //
            {
                pchar3[nJ] = 255;
            }
            else
            {
                pchar3[nJ] = 0;
            }
        }
    }
}

vector<RotatedRect> armorDetect(vector<RotatedRect> vEllipse)
{
    vector<RotatedRect> vRlt;
    RotatedRect armor; //定义装甲区域的旋转矩形
    int nL, nW;
    double dAngle;
    vRlt.clear();
    if (vEllipse.size() < 2) //如果检测到的旋转矩形个数小于2,则直接返回
        return vRlt;
    for (unsigned int nI = 0; nI < vEllipse.size() - 1; nI++) //求任意两个旋转矩形的夹角
    {
        for (unsigned int nJ = nI + 1; nJ < vEllipse.size(); nJ++)
        {
            dAngle = abs(vEllipse[nI].angle - vEllipse[nJ].angle);
            while (dAngle > 180)
                dAngle -= 180;
            //判断这两个旋转矩形是否是一个装甲的两个LED等条
            if ((dAngle < T_ANGLE_THRE || 180 - dAngle < T_ANGLE_THRE) && abs(vEllipse[nI].size.height - vEllipse[nJ].size.height) < (vEllipse[nI].size.height + vEllipse[nJ].size.height) / T_SIZE_THRE && abs(vEllipse[nI].size.width - vEllipse[nJ].size.width) < (vEllipse[nI].size.width + vEllipse[nJ].size.width) / T_SIZE_THRE)
            {
                armor.center.x = (vEllipse[nI].center.x + vEllipse[nJ].center.x) / 2; //装甲中心的x坐标 
                armor.center.y = (vEllipse[nI].center.y + vEllipse[nJ].center.y) / 2; //装甲中心的y坐标
                armor.angle = (vEllipse[nI].angle + vEllipse[nJ].angle) / 2;   //装甲所在旋转矩形的旋转角度
                if (180 - dAngle < T_ANGLE_THRE)
                    armor.angle += 90;
                nL = (vEllipse[nI].size.height + vEllipse[nJ].size.height) / 2; //装甲的高度
                nW = sqrt((vEllipse[nI].center.x - vEllipse[nJ].center.x) * (vEllipse[nI].center.x - vEllipse[nJ].center.x) + (vEllipse[nI].center.y - vEllipse[nJ].center.y) * (vEllipse[nI].center.y - vEllipse[nJ].center.y)); //装甲的宽度等于两侧LED所在旋转矩形中心坐标的距离
                if (nL < nW)
                {
                    armor.size.height = nL;
                    armor.size.width = nW;
                }
                else
                {
                    armor.size.height = nW;
                    armor.size.width = nL;
                }
                vRlt.push_back(armor); //将找出的装甲的旋转矩形保存到vector
            }
        }
    }
    return vRlt;
}

void drawBox(RotatedRect box, Mat img)
{
    Point2f pt[4];
    int i;
    for (i = 0; i < 4; i++)

 

 


    {
        pt[i].x = 0;
        pt[i].y = 0;
    }
    box.points(pt);//计算二维盒子顶点 
    line(img, pt[0], pt[1], CV_RGB(0, 0, 255), 2, 8, 0);
    line(img, pt[1], pt[2], CV_RGB(0, 0, 255), 2, 8, 0);
    line(img, pt[2], pt[3], CV_RGB(0, 0, 255), 2, 8, 0);
    line(img, pt[3], pt[0], CV_RGB(0, 0, 255), 2, 8, 0);
}
技术图片

以上是关于ROM 装甲板识别 蓝色车识别的主要内容,如果未能解决你的问题,请参考以下文章

装甲板识别个人实现

了解RoboMaster视觉组视觉在各兵种中的作用

你知道“汽车Vin码识别”技术可以识别事故车吗?

车辆识别代码查车型是哪个软件

实战三:基于LGB实现车联网大数据碰撞识别 代码+数据(非常详细可作为毕设)

Visual Studio Code 无法识别 EJS