Tensorflow之CNN卷积层池化层padding规则

Posted liuhuacai

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Tensorflow之CNN卷积层池化层padding规则相关的知识,希望对你有一定的参考价值。

padding的规则

·          padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例)

    技术图片技术图片

      输出宽度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5【向上取整=2】

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5【向上取整=2】

    输出的形状[1,2,2,1]

    技术图片

技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding=VALID)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
 [[[[ 2.]
   [-1.]]

  [[-1.]
   [ 0.]]]]
‘‘‘
VALID步长2

    如果strides=[1,3,3,1]的情况又是如何呢?   

    输出宽度:output_width  = (in_width-filter_width+1)/strides_width  =(5-3+1)/3=1

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/3=1

    输出的形状[1,1,1,1],因此输出的结果只有一个

    技术图片

技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding=VALID)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 2.]]]]
‘‘‘
VALID步长3

              padding=‘SAME’时,输出的宽度和高度的计算公式

    输出宽度:output_width  = in_width/strides_width=5/2=2.5【向上取整3】

    输出高度:output_height = in_height/strides_height=5/2=2.5【向上取整3】

    则输出的形状:[1,3,3,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((3-1)*2+3-5,0)=2

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((3-1)*2+3-5,0)=2

    pad_top = pad_height/2=1

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=1

    pad_right = pad_width-pad_left=1

    技术图片    

技术图片
import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding=SAME)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 3.]
   [ 1.]
   [-4.]]

  [[ 3.]
   [ 0.]
   [-3.]]

  [[ 4.]
   [-1.]
   [-3.]]]]
‘‘‘
SAME步长2

    如果步长为3呢?补0的规则又如何?

    输出宽度:output_width  = in_width/strides_width=5/3=2

    输出高度:output_height = in_height/strides_height=5/3=2

    则输出的形状:[1,2,2,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((2-1)*3+3-5,0)=1

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((2-1)*3+3-5,0)=1

    pad_top = pad_height/2=0【向下取整】

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=0【向下取整】

    pad_right = pad_width-pad_left=1

    技术图片

技术图片
import tensorflow as tf
print(3/2)
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1]))  ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1]))  ##1个卷积核对应1个featuremap输出

op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding=SAME)  ##步长2,VALID不补0操作

init = tf.global_variables_initializer()

with tf.Session() as  sess:
    sess.run(init)
    # print(‘input:
‘, sess.run(input))
    # print(‘filter:
‘, sess.run(filter))
    print(op:
,sess.run(op))

##输出结果
‘‘‘
op:
 [[[[ 2.]
   [-3.]]

  [[ 0.]
   [-3.]]]]
‘‘‘
SAME步长3

 

以上是关于Tensorflow之CNN卷积层池化层padding规则的主要内容,如果未能解决你的问题,请参考以下文章

卷积层池化层和全连接层 区别和作用

卷积层池化层和全连接层 区别和作用

AlexNet卷积层池化层的输出图像尺寸计算

FPGA教程案例56深度学习案例3——基于FPGA的CNN卷积神经网络之池化层verilog实现

学习笔记TF014:卷积层激活函数池化层归一化层高级层

理解CNN卷积层与池化层计算