Mapreduce 数据清洗 更改
Posted zlj843767688
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mapreduce 数据清洗 更改相关的知识,希望对你有一定的参考价值。
package test; import java.io.IOException; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Locale; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class Filter { public static class Map extends Mapper<Object, Text, Text, NullWritable> { private static Text newKey = new Text(); /*public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); System.out.println(line); String arr[] = line.split(" "); newKey.set(arr[1]); context.write(newKey, NullWritable.get()); System.out.println(newKey); } }*/ public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String S1 = value.toString (); LogParser parser = new LogParser(); final String[] array = parser.parse(S1); System.out.println(S1); /*System.out.format( "解析结果: ip=%s, time=%s,day=%s, traffic=%s, type=%s,id=%s", array[0], array[1], array[2], array[3], array[4],array[5]);*/ String a=array[0]; String u=array[1]; String c=array[2]; String d=array[3]; String e=array[4]; String f=array[5]; String str = a +","+u +","+c+","+d+","+e+","+f; newKey.set(str); context.write(newKey, NullWritable.get()); System.out.println(newKey); } } public static class Reduce extends Reducer<Text, NullWritable, Text, NullWritable> { public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { context.write(key, NullWritable.get()); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); System.out.println("start"); Job job = new Job(conf, "filter"); job.setJarByClass(Filter.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); Path in = new Path("hdfs://localhost:9000/user/hadoop/in/Result"); Path out = new Path("hdfs://localhost:9000/user/hadoop/out"); FileInputFormat.addInputPath(job, in); FileOutputFormat.setOutputPath(job, out); System.exit(job.waitForCompletion(true) ? 0 : 1); } static class MyMapper extends Mapper<LongWritable, Text, LongWritable, Text> { LogParser logParser = new LogParser(); Text outputValue = new Text(); protected void map( LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, LongWritable, Text>.Context context) throws java.io.IOException, InterruptedException { final String[] parsed = logParser.parse(value.toString()); // step1.过滤掉静态资源访问请求 if (parsed[2].startsWith("GET /static/") || parsed[2].startsWith("GET /uc_server")) { return; } // step2.过滤掉开头的指定字符串 if (parsed[2].startsWith("GET /")) { parsed[2] = parsed[2].substring("GET /".length()); } else if (parsed[2].startsWith("POST /")) { parsed[2] = parsed[2].substring("POST /".length()); } // step3.过滤掉结尾的特定字符串 if (parsed[2].endsWith(" HTTP/1.1")) { parsed[2] = parsed[2].substring(0, parsed[2].length() - " HTTP/1.1".length()); } // step4.只写入前三个记录类型项 outputValue.set(parsed[0] + " " + parsed[1] + " " + parsed[2]); context.write(key, outputValue); } } static class MyReducer extends Reducer<LongWritable, Text, Text, NullWritable> { protected void reduce( LongWritable k2, java.lang.Iterable<Text> v2s, org.apache.hadoop.mapreduce.Reducer<LongWritable, Text, Text, NullWritable>.Context context) throws java.io.IOException, InterruptedException { for (Text v2 : v2s) { context.write(v2, NullWritable.get()); } }; } /* * 日志解析类 */ static class LogParser { public static final SimpleDateFormat FORMAT = new SimpleDateFormat( "d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); public static final SimpleDateFormat dateformat1 = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss"); /** * 解析英文时间字符串 * * @param string * @return * @throws ParseException */ private Date parseDateFormat(String string) { Date parse = null; try { parse = FORMAT.parse(string); } catch (ParseException e) { e.printStackTrace(); } return parse; } /** * 解析日志的行记录 * * @param line * @return 数组含有5个元素,分别是ip、时间、日期、状态、流量 */ public String[] parse(String line) { String ip = parseIP(line); String time = parseTime(line); String day = parseday(line); String traffic = parseTraffic(line); String type = parsertype(line); String id = parseid( line); return new String[] { ip, time, day,traffic , type, id }; } private String parseIP(String line) { String ip = line.split(",")[0].trim(); return ip; } private String parseTime(String line) { final int first = line.indexOf(","); final int last = line.indexOf(" +0800,"); String time = line.substring(first + 1, last).trim(); Date date = parseDateFormat(time); return dateformat1.format(date); } private String parseday(String line) { String riqi = line.split(",")[2].trim(); return riqi; } private String parseTraffic(String line) { String riqi = line.split(",")[3].trim(); return riqi; } //private String parseTraffic(String line) { // final String trim = line.substring(line.lastIndexOf(",") + 1) // .trim(); //String traffic = trim.split(" ")[0]; //return traffic; //} //private String parsertype(String line) { // final int first = line.indexOf(","); // final int last = line.lastIndexOf(","); // String url = line.substring(first + 1, last); // return url; //} private String parsertype(String line) { String riqi = line.split(",")[4].trim(); return riqi; } private String parseid(String line) { final String trim = line.substring(line.lastIndexOf(",") + 1) .trim(); String id = trim.split(" ")[0]; return id; } } }
将清洗后输出的分隔符改为“,”,然后建表里,用 逗号分隔开。
create table if not exists hive.data(ip string,`time` string,day string,traffic bigint,type string,id string)row format delimited fields terminated by ‘,‘; 建表语句
load data inpath ‘hdfs://localhost:9000/user/hadoop/out/part-r-00000‘ overwrite into table data;导入hive数据表里
以上是关于Mapreduce 数据清洗 更改的主要内容,如果未能解决你的问题,请参考以下文章