tensorflow零起点快速入门

Posted bai2018

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow零起点快速入门相关的知识,希望对你有一定的参考价值。

指定设备与矩阵乘法

使用tf.device("/gpu:0")用于指定设备进行运算。

在使用jupyter notebook的时候,可能会出现使用异常,需要使用config=tf.ConfigProto(allow_soft_placement=True)来处理。

该运行结果为12。属于叉乘。点乘使用另外的multiply。

config=tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
    with tf.device("/gpu:0"):
        matrix1=tf.constant([[3,3]])
        matrix2=tf.constant([[2],[2]])
        product=tf.matmul(matrix1,matrix2)
        result=sess.run(product)
        print(result)

  

建立简单的张量流图计算

技术图片

 

 

图为上述。cnt+a得到y,y通过assign赋值给cnt。

运行过程中,初始化变量后,通过每次运行assign,即完成了输出效果:1,2,3

config=tf.ConfigProto(allow_soft_placement=True)
cnt=tf.Variable(0,name="cnt")
a=tf.constant(1,name="a")
y=tf.add(cnt,a)
y2=tf.assign(cnt,y)
init=tf.initialize_all_variables()
with tf.Session(config=config) as ss:
    ss.run(init)
    xss=ss.run(cnt)
    for xc in range(3):
        ys2=ss.run(y2)
        print(ys2)
    xsum=tf.summary.FileWriter(".",ss.graph)

  

点乘数据

可以使用一维,二维,等进行点乘,只要数据对应即可。使用feed_dict进行数据输入。run后的返回值即为数据输出

a=tf.placeholder(tf.float32,name=‘ta‘)
b=tf.placeholder(tf.float32,name=‘tb‘)
c=tf.multiply(a,b,name=‘tc‘)
config=tf.ConfigProto(allow_soft_placement=True)
init=tf.initialize_all_variables()
with tf.Session(config=config) as ss:
    ss.run(init)
    xss=ss.run([c],feed_dict={a:[7,2],b:[2,2]})
    print(xss)
    xsum=tf.summary.FileWriter(".",ss.graph)

也可写成如下形式:将变量分离出来定义。

a=tf.placeholder(tf.float32,name=‘ta‘)
b=tf.placeholder(tf.float32,name=‘tb‘)
c=tf.multiply(a,b,name=‘tc‘)
config=tf.ConfigProto(allow_soft_placement=True)
init=tf.initialize_all_variables()
a_data=[[1,2,3],[4,5,6]]
b_data=[[2,3,4],[5,6,7]]
with tf.Session(config=config) as ss:
    ss.run(init)
    xss=ss.run([c],feed_dict={a:a_data,b:b_data})
    print(xss)
    xsum=tf.summary.FileWriter(".",ss.graph)

  

run过程的一些写法

书写过程中,可以使用中括号,然后输出(本次输出为【7,21】)

a=tf.constant(3,name=‘ta‘)
b=tf.constant(2,name=‘tb‘)
c=tf.constant(5,name=‘tc‘)
m1=tf.add(b,c,name=‘m1‘)
m2=tf.multiply(a,m1,name=‘m2‘)
config=tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as ss:
    xss=ss.run([m1,m2])
    print(xss)
    xsum=tf.summary.FileWriter(".",ss.graph)

也可以如下所代表的批量输出:

y2,w2,l2=ss.run(y),ss.run(w),ss.run(loss)

  

构建单神经元的神经网络

y=w*x

loss=(y-y_)^2

使用学习率为0.025的梯度下降,最小化loss。

定义完模型后,通过tf.summary.scalar控制tensorboard输出scalar数据图,显示数据的变化情况。

然后进行运算,最终的结果,通过saver=tf.train.Saver()的一些方法保存模型(训练后的模型)

 

w=tf.Variable(0.8,name=‘weight‘)
x=tf.constant(2.0,name=‘input‘)
y=tf.multiply(w,x,name=‘output‘)
y_=tf.constant(0.0,name=‘correct_value‘)
loss=tf.pow(y-y_,2,name=‘loss‘)
train_step=tf.train.GradientDescentOptimizer(0.025).minimize(loss)

with tf.name_scope(‘summar‘):
    for value in [x,w,y,y_,loss]:
        tf.summary.scalar(value.op.name,value)
    #tf.summary.histogram(‘histogram‘,w)
    #tf.summary.histogram(‘loss‘,loss)
    summaries=tf.summary.merge_all()
    
config=tf.ConfigProto(allow_soft_placement=True)
init=tf.initialize_all_variables()

with tf.Session(config=config) as ss:
    xsum=tf.summary.FileWriter(".",ss.graph)
    xss=ss.run(init)
    for i in range(100):
        x_data=ss.run(summaries)
        xsum.add_summary(x_data,i)
        x_data=ss.run(train_step)
        y2,w2,l2=ss.run(y),ss.run(w),ss.run(loss)
        print(i,‘ ‘,y2,‘ ‘,w2,‘ ‘,l2,‘ ‘)
    saver=tf.train.Saver()
    saver.save(ss,‘tmp/.‘)

  技术图片技术图片

 

 

 构建的张量图如上,点击其中的一些空心圆,可以查看其数值,操作,在gradient模块中,点开可以看到内部详细的结构。

通过上述代码,在summer中归并了一些scalar图如下:

技术图片

 

 在迭代100次后,输出为:

技术图片

 

 

模型读取

大致是这样,只是有时候会因为变量不匹配无法读取

使用Saver时候,需要先把变量设置好,可能会有NotFoundError

w=tf.Variable(0.8,name=‘weight‘)
x=tf.constant(2.0,name=‘input‘)
y=tf.multiply(w,x,name=‘output‘)
y_=tf.constant(0.0,name=‘correct_value‘)
loss=tf.pow(y-y_,2,name=‘loss‘)
train_step=tf.train.GradientDescentOptimizer(0.025).minimize(loss)
config=tf.ConfigProto(allow_soft_placement=True)
init=tf.initialize_all_variables()
with tf.Session(config=config) as ss:
    xss=ss.run(init)
    saver=tf.train.Saver()
    saver.restore(ss,‘tmp/.‘)
    print(ss.run(loss))

  

 

 

 

 

 

 

 

以上是关于tensorflow零起点快速入门的主要内容,如果未能解决你的问题,请参考以下文章

零起点入门教程:用宜搭简单布局一个首页

教程干货——零基础创建简单的在线审批流程

TensorFlow入门,零基础到精通只需3分钟!

如何从零使用 Keras + TensorFlow 开发一个复杂深度学习模型?

真正从零开始,TensorFlow详细安装入门图文教程!(linux)

真正从零开始,TensorFlow详细安装入门图文教程!