EM 算法-GMM
Posted yanshw
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EM 算法-GMM相关的知识,希望对你有一定的参考价值。
高斯混合模型
混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型;
GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布混合起来的模型;
概率密度函数为
K 表示高斯分布的个数,αk 表示每个高斯分布的系数,αk>0,并且 Σαk=1,
Ø(y|θk) 表示每个高斯分布,θk 表示每个高斯分布的参数,θk=(uk,σk2);
举个例子
男人和女人的身高都服从各自的高斯分布,把男人女人混在一起,那他们的身高就服从高斯混合分布;
高斯混合模型就是用混合在一起的身高数据,估计男人和女人各自的高斯分布
小结
GMM 实际上分为两步,第一步是选择一个高斯分布,如男人数据集,这里涉及取到某个分布的概率,αk,
然后从该分布中取一个样本,等同于普通高斯分布
GMM 常用于聚类,也就是把每个概率密度分布聚为一类;如果概率密度分布为已知,那就变成参数估计问题
EM 解释 GMM
EM 的核心是 隐变量 和 似然函数
求导结果如下
GMM 的 EM 算法
算法流程
参考资料:
https://blog.csdn.net/jinping_shi/article/details/59613054
《统计学习方法》李航
以上是关于EM 算法-GMM的主要内容,如果未能解决你的问题,请参考以下文章