EM 算法-GMM

Posted yanshw

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了EM 算法-GMM相关的知识,希望对你有一定的参考价值。

高斯混合模型

混合模型,顾名思义就是几个概率分布密度混合在一起,而高斯混合模型是最常见的混合模型;

GMM,全称 Gaussian Mixture Model,中文名高斯混合模型,也就是由多个高斯分布混合起来的模型;

概率密度函数为

技术图片

K 表示高斯分布的个数,αk 表示每个高斯分布的系数,αk>0,并且 Σαk=1,

Ø(y|θk) 表示每个高斯分布,θk 表示每个高斯分布的参数,θk=(uk,σk2);

技术图片

 

举个例子

男人和女人的身高都服从各自的高斯分布,把男人女人混在一起,那他们的身高就服从高斯混合分布;

高斯混合模型就是用混合在一起的身高数据,估计男人和女人各自的高斯分布

 

小结

GMM 实际上分为两步,第一步是选择一个高斯分布,如男人数据集,这里涉及取到某个分布的概率,αk

然后从该分布中取一个样本,等同于普通高斯分布

 

GMM 常用于聚类,也就是把每个概率密度分布聚为一类;如果概率密度分布为已知,那就变成参数估计问题

 

EM 解释 GMM

EM 的核心是 隐变量 和 似然函数

技术图片

 

求导结果如下

技术图片 

 

GMM 的 EM 算法

技术图片

 

算法流程

技术图片

 

 

参考资料:

https://blog.csdn.net/jinping_shi/article/details/59613054 

《统计学习方法》李航 

以上是关于EM 算法-GMM的主要内容,如果未能解决你的问题,请参考以下文章

05 EM算法 - 高斯混合模型 - GMM

GMM与EM算法

高斯混合模型GMM的EM算法实现(聚类)

GMM与EM共舞

6. EM算法-高斯混合模型GMM+Lasso详细代码实现

EM算法和GMM模型推导