Python函数装饰器原理与用法详解《摘》

Posted pythonbetter

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python函数装饰器原理与用法详解《摘》相关的知识,希望对你有一定的参考价值。

本文实例讲述了Python函数装饰器原理与用法。分享给大家供大家参考,具体如下:

装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等应用场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

严格来说,装饰器只是语法糖,装饰器是可调用的对象,可以像常规的可调用对象那样调用,特殊的地方是装饰器的参数是一个函数。

import time
#遵守开放封闭原则
def foo():
  start = time.time()
  # print(start) # 1504698634.0291758从1970年1月1号到现在的秒数,那年Unix诞生
  time.sleep(3)
  end = time.time()
  print(spend %s%(end - start))
foo()

bar()、bar2()也有类似的需求,怎么做?再在bar函数里调用时间函数?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门设定时间:

技术图片
import time
def show_time(func):
  start_time=time.time()
  func()
  end_time=time.time()
  print(spend %s%(end_time-start_time))
def foo():
  print(hello foo)
  time.sleep(3)
show_time(foo)
View Code

但是这样的话,你基础平台的函数修改了名字,容易被业务线的人投诉的,因为我们每次都要将一个函数作为参数传递给show_time函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行foo(),但是现在不得不改成show_time(foo)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

技术图片
def show_time(f):
  def inner():
    start = time.time()
    f()
    end = time.time()
    print(spend %s%(end - start))
  return inner
@show_time #foo=show_time(f)
def foo():
  print(foo...)
  time.sleep(1)
foo()
def bar():
  print(bar...)
  time.sleep(2)
bar()
View Code

输出结果:

foo...
spend 1.0005607604980469
bar...

函数show_time就是装饰器,它把真正的业务方法f包裹在函数里面,看起来像foo被上下时间函数装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

装饰器有2个特性,一是可以把被装饰的函数替换成其他函数, 二是可以在加载模块时候立即执行

技术图片
def decorate(func):
  print(running decorate, func)
  def decorate_inner():
    print(running decorate_inner function)
    return func()
  return decorate_inner
@decorate
def func_1():
  print(running func_1)
if __name__ == __main__:
  print(func_1)
  #running decorate <function func_1 at 0x000001904743DEA0>
  # <function decorate.<locals>.decorate_inner at 0x000001904743DF28>
  func_1()
  #running decorate_inner function
  # running func_1
View Code

通过args 和 *kwargs 传递被修饰函数中的参数

技术图片
 1 def decorate(func):
 2   def decorate_inner(*args, **kwargs):
 3     print(type(args), type(kwargs))
 4     print(args, args, kwargs, kwargs)
 5     return func(*args, **kwargs)
 6   return decorate_inner
 7 @decorate
 8 def func_1(*args, **kwargs):
 9   print(args, kwargs)
10 if __name__ == __main__:
11   func_1(1, 2, 3, para_1=1, para_2=2, para_3=3)
12 #返回结果
13 #<class ‘tuple‘> <class ‘dict‘>
14 # args (‘1‘, ‘2‘, ‘3‘) kwargs {‘para_1‘: ‘1‘, ‘para_2‘: ‘2‘, ‘para_3‘: ‘3‘}
15 # (‘1‘, ‘2‘, ‘3‘) {‘para_1‘: ‘1‘, ‘para_2‘: ‘2‘, ‘para_3‘: ‘3‘}
View Code

带参数的被装饰函数

技术图片
 1 import time
 2 # 定长
 3 def show_time(f):
 4   def inner(x,y):
 5     start = time.time()
 6     f(x,y)
 7     end = time.time()
 8     print(spend %s%(end - start))
 9   return inner
10 @show_time
11 def add(a,b):
12   print(a+b)
13   time.sleep(1)
14 add(1,2)
View Code

不定长

技术图片
 1 import time
 2 #不定长
 3 def show_time(f):
 4   def inner(*x,**y):
 5     start = time.time()
 6     f(*x,**y)
 7     end = time.time()
 8     print(spend %s%(end - start))
 9   return inner
10 @show_time
11 def add(*a,**b):
12   sum=0
13   for i in a:
14     sum+=i
15   print(sum)
16   time.sleep(1)
17 add(1,2,3,4)
View Code

带参数的装饰器

在上面的装饰器调用中,比如@show_time,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

技术图片
 1 import time
 2 def time_logger(flag=0):
 3   def show_time(func):
 4     def wrapper(*args, **kwargs):
 5       start_time = time.time()
 6       func(*args, **kwargs)
 7       end_time = time.time()
 8       print(spend %s % (end_time - start_time))
 9       if flag:
10         print(将这个操作的时间记录到日志中)
11     return wrapper
12   return show_time
13 @time_logger(flag=1)
14 def add(*args, **kwargs):
15   time.sleep(1)
16   sum = 0
17   for i in args:
18     sum += i
19   print(sum)
20 add(1, 2, 5)
View Code

@time_logger(flag=1) 做了两件事:

(1)time_logger(1):得到闭包函数show_time,里面保存环境变量flag

(2)@show_time   :add=show_time(add)

上面的time_logger是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器(一个含有参数的闭包函数)。当我 们使用@time_logger(1)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

叠放装饰器

执行顺序是什么

如果一个函数被多个装饰器修饰,其实应该是该函数先被最里面的装饰器修饰后(下面例子中函数main()先被inner装饰,变成新的函数),变成另一个函数后,再次被装饰器修饰

技术图片
 1 def outer(func):
 2   print(enter outer, func)
 3   def wrapper():
 4     print(running outer)
 5     func()
 6   return wrapper
 7 def inner(func):
 8   print(enter inner, func)
 9   def wrapper():
10     print(running inner)
11     func()
12   return wrapper
13 @outer
14 @inner
15 def main():
16   print(running main)
17 if __name__ == __main__:
18   main()
19 #返回结果
20 # enter inner <function main at 0x000001A9F2BCDF28>
21 # enter outer <function inner.<locals>.wrapper at 0x000001A9F2BD5048>
22 # running outer
23 # running inner
24 # running main
View Code

类装饰器

相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

技术图片
 1 import time
 2 class Foo(object):
 3   def __init__(self, func):
 4     self._func = func
 5   def __call__(self):
 6     start_time=time.time()
 7     self._func()
 8     end_time=time.time()
 9     print(spend %s%(end_time-start_time))
10 @Foo #bar=Foo(bar)
11 def bar():
12   print (bar)
13   time.sleep(2)
14 bar()  #bar=Foo(bar)()>>>>>>>没有嵌套关系了,直接active Foo的 __call__方法
View Code

标准库中有多种装饰器

例如:装饰方法的函数有property, classmethod, staticmethod; functools模块中的lru_cache, singledispatch,  wraps 等等

from functools import lru_cache
from functools import singledispatch
from functools import wraps

functools.wraps使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

技术图片
 1 def foo():
 2   print("hello foo")
 3 print(foo.__name__)# foo
 4 def logged(func):
 5   def wrapper(*args, **kwargs):
 6     print (func.__name__ + " was called")
 7     return func(*args, **kwargs)
 8   return wrapper
 9 @logged
10 def cal(x):
11   resul=x + x * x
12   print(resul)
13 cal(2)
14 #6
15 #cal was called
16 print(cal.__name__)# wrapper
17 print(cal.__doc__)#None
18 #函数f被wrapper取代了,当然它的docstring,__name__就是变成了wrapper函数的信息了。
View Code

使用装饰器会产生我们可能不希望出现的副作用, 例如:改变被修饰函数名称,对于调试器或者对象序列化器等需要使用内省机制的那些工具,可能会无法正常运行;

其实调用装饰器后,会将同一个作用域中原来函数同名的那个变量(例如下面的func_1),重新赋值为装饰器返回的对象;使用@wraps后,会把与内部函数(被修饰函数,例如下面的func_1)相关的重要元数据全部复制到外围函数(例如下面的decorate_inner)

技术图片
 1 from functools import wraps
 2 def decorate(func):
 3   print(running decorate, func)
 4   @wraps(func)
 5   def decorate_inner():
 6     print(running decorate_inner function, decorate_inner)
 7     return func()
 8   return decorate_inner
 9 @decorate
10 def func_1():
11   print(running func_1, func_1)
12 if __name__ == __main__:
13   func_1()
14 #输出结果
15 #running decorate <function func_1 at 0x0000023E8DBD78C8>
16 # running decorate_inner function <function func_1 at 0x0000023E8DBD7950>
17 # running func_1 <function func_1 at 0x0000023E8DBD7950>
View Code

---2019.11.21  21:13--多练习,熟能生巧--<https://www.jb51.net/article/167769.htm>

 

以上是关于Python函数装饰器原理与用法详解《摘》的主要内容,如果未能解决你的问题,请参考以下文章

python装饰器原理和用法总结

Python全栈开发之8装饰器详解

Python @函数装饰器及用法

Python装饰器详解

python装饰器详解

Python基础装饰器的解释和用法