Opencv颜色识别与追踪

Posted loving-q

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Opencv颜色识别与追踪相关的知识,希望对你有一定的参考价值。

这是基于颜色识别的物体追踪

不废话

直接看代码

这是Opencv3的代码

 

//---------------------------------【头文件、命名空间包含部分】----------------------------
//        描述:包含程序所使用的头文件和命名空间
//-------------------------------------------------------------------------------------------------
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>

using namespace cv;
using namespace std;



//-----------------------------------【全局变量声明】-----------------------------------------
//        描述:声明全局变量
//-------------------------------------------------------------------------------------------------
Mat image;
bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;


//--------------------------------【onMouse( )回调函数】------------------------------------
//        描述:鼠标操作回调
//-------------------------------------------------------------------------------------------------
static void onMouse( int event, int x, int y, int, void* )
{
    if( selectObject )
    {
        selection.x = MIN(x, origin.x);
        selection.y = MIN(y, origin.y);
        selection.width = std::abs(x - origin.x);
        selection.height = std::abs(y - origin.y);

        selection &= Rect(0, 0, image.cols, image.rows);
    }

    switch( event )
    {
    //此句代码的OpenCV2版为:
    //case CV_EVENT_LBUTTONDOWN:
    //此句代码的OpenCV3版为:
    case EVENT_LBUTTONDOWN:
        origin = Point(x,y);
        selection = Rect(x,y,0,0);
        selectObject = true;
        break;
    //此句代码的OpenCV2版为:
    //case CV_EVENT_LBUTTONUP:
    //此句代码的OpenCV3版为:
    case EVENT_LBUTTONUP:
        selectObject = false;
        if( selection.width > 0 && selection.height > 0 )
            trackObject = -1;
        break;
    }
}

//--------------------------------【help( )函数】----------------------------------------------
//        描述:输出帮助信息
//-------------------------------------------------------------------------------------------------
static void ShowHelpText()
{
    cout << "

	此Demo显示了基于均值漂移的追踪(tracking)技术
"
        "	请用鼠标框选一个有颜色的物体,对它进行追踪操作
";

    cout << "

	操作说明: 
"
        "		用鼠标框选对象来初始化跟踪
"
        "		ESC - 退出程序
"
        "		c - 停止追踪
"
        "		b - 开/关-投影视图
"
        "		h - 显示/隐藏-对象直方图
"
        "		p - 暂停视频
";
}

const char* keys =
{
    "{1|  | 0 | camera number}"
};


//-----------------------------------【main( )函数】--------------------------------------------
//        描述:控制台应用程序的入口函数,我们的程序从这里开始
//-------------------------------------------------------------------------------------------------
int main( int argc, const char** argv )
{
    ShowHelpText();

    VideoCapture cap;
    Rect trackWindow;
    int hsize = 16;
    float hranges[] = {0,180};
    const float* phranges = hranges;

    cap.open(0);

    if( !cap.isOpened() )
    {
        cout << "不能初始化摄像头
";
    }

    namedWindow( "Histogram", 0 );
    namedWindow( "CamShift Demo", 0 );
    setMouseCallback( "CamShift Demo", onMouse, 0 );
    createTrackbar( "Vmin", "CamShift Demo", &vmin, 256, 0 );
    createTrackbar( "Vmax", "CamShift Demo", &vmax, 256, 0 );
    createTrackbar( "Smin", "CamShift Demo", &smin, 256, 0 );

    Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
    bool paused = false;

    for(;;)
    {
        if( !paused )
        {
            cap >> frame;
            if( frame.empty() )
                break;
        }

        frame.copyTo(image);

        if( !paused )
        {
            cvtColor(image, hsv, COLOR_BGR2HSV);

            if( trackObject )
            {
                int _vmin = vmin, _vmax = vmax;

                inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),
                    Scalar(180, 256, MAX(_vmin, _vmax)), mask);
                int ch[] = {0, 0};
                hue.create(hsv.size(), hsv.depth());
                mixChannels(&hsv, 1, &hue, 1, ch, 1);

                if( trackObject < 0 )
                {
                    Mat roi(hue, selection), maskroi(mask, selection);
                    calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
                    //此句代码的OpenCV3版为:
                    normalize(hist, hist, 0, 255, NORM_MINMAX);
                    //此句代码的OpenCV2版为:
                    //normalize(hist, hist, 0, 255, CV_MINMAX);

                    trackWindow = selection;
                    trackObject = 1;

                    histimg = Scalar::all(0);
                    int binW = histimg.cols / hsize;
                    Mat buf(1, hsize, CV_8UC3);
                    for( int i = 0; i < hsize; i++ )
                        buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);

                    //此句代码的OpenCV3版为:
                    cvtColor(buf, buf, COLOR_HSV2BGR);
                    //此句代码的OpenCV2版为:
                    //cvtColor(buf, buf, CV_HSV2BGR);

                    for( int i = 0; i < hsize; i++ )
                    {
                        int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);
                        rectangle( histimg, Point(i*binW,histimg.rows),
                            Point((i+1)*binW,histimg.rows - val),
                            Scalar(buf.at<Vec3b>(i)), -1, 8 );
                    }
                }

                calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
                backproj &= mask;
                RotatedRect trackBox = CamShift(backproj, trackWindow,

                //此句代码的OpenCV3版为:
                TermCriteria( TermCriteria::EPS | TermCriteria::COUNT, 10, 1 ));
                //此句代码的OpenCV2版为:
                //TermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ));

                if( trackWindow.area() <= 1 )
                {
                    int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5)/6;
                    trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
                        trackWindow.x + r, trackWindow.y + r) &
                        Rect(0, 0, cols, rows);
                }

                if( backprojMode )
                    cvtColor( backproj, image, COLOR_GRAY2BGR );

                //此句代码的OpenCV3版为:
                ellipse( image, trackBox, Scalar(0,0,255), 3, LINE_AA );
                //此句代码的OpenCV2版为:
                //ellipse( image, trackBox, Scalar(0,0,255), 3, CV_AA );

            }
        }
        else if( trackObject < 0 )
            paused = false;

        if( selectObject && selection.width > 0 && selection.height > 0 )
        {
            Mat roi(image, selection);
            bitwise_not(roi, roi);
        }

        imshow( "CamShift Demo", image );
        imshow( "Histogram", histimg );

        char c = (char)waitKey(10);
        if( c == 27 )
            break;
        switch(c)
        {
        case b:
            backprojMode = !backprojMode;
            break;
        case c:
            trackObject = 0;
            histimg = Scalar::all(0);
            break;
        case h:
            showHist = !showHist;
            if( !showHist )
                destroyWindow( "Histogram" );
            else
                namedWindow( "Histogram", 1 );
            break;
        case p:
            paused = !paused;
            break;
        default:
            ;
        }
    }

    return 0;
}

拜拜啦 兄弟们

以上是关于Opencv颜色识别与追踪的主要内容,如果未能解决你的问题,请参考以下文章

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

Python黑科技:50行代码运用Python+OpenCV实现人脸追踪+详细教程+快速入门+图像识

飞龙绣球的颜色追踪与最小外边框选择

物体追踪实战:使用 OpenCV实现对指定颜色的物体追踪

OpenCV中几何形状识别与测量