美国波士顿房价是多少?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了美国波士顿房价是多少?相关的知识,希望对你有一定的参考价值。

截止2013年9月4日,波士顿房产出售房产中位数是43万美元。

 

 

波士顿每个区域房价如下:

按照房间数的平均价位如下:

更多波士顿房价:环中投资

参考技术A 平均价近40万美元,包括公寓和独立屋。 参考技术B 看市区还是郊区了追问

市区

PaddlePaddle框架学习波士顿房价预测

听说百度的Paddle是个集成度很高挺好用的框架,从本篇开始,来进行PaddlePaddle的学习。

1.数据集展示

在这里插入图片描述
使用的是波士顿房价数据集,前面若干列是影响因素,最后一列是真实房价数据。

2.程序实现

这里采用是官方给的例程,步骤和pytorch框架差不多,多了一些模型保存,数据归一化等细节。

网络结构

class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()

        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)

    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

由于仅是个线性模型,因此仅用了一层13-1的全连接层,不需要激活函数。

完整代码:

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np


def load_data():
    # 从文件导入数据
    datafile = './housing.data'
    data = np.fromfile(datafile, sep=' ', dtype=np.float32)

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算train数据集的最大值,最小值,平均值
    maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), training_data.sum(axis=0) / training_data.shape[0]

    # 记录数据的归一化参数,在预测时对数据做归一化
    global max_values
    global min_values
    global avg_values
    max_values = maximums
    min_values = minimums
    avg_values = avgs

    # 对数据进行归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data


class Regressor(paddle.nn.Layer):

    # self代表类的实例自身
    def __init__(self):
        # 初始化父类中的一些参数
        super(Regressor, self).__init__()

        # 定义一层全连接层,输入维度是13,输出维度是1
        self.fc = Linear(in_features=13, out_features=1)

    # 网络的前向计算
    def forward(self, inputs):
        x = self.fc(inputs)
        return x

# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

EPOCH_NUM = 10  # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小

# 定义外层循环
for epoch_id in range(EPOCH_NUM):
    # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
    np.random.shuffle(training_data)
    # 将训练数据进行拆分,每个batch包含10条数据
    mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    # 定义内层循环
    for iter_id, mini_batch in enumerate(mini_batches):
        x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
        y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
        # 将numpy数据转为飞桨动态图tensor形式
        house_features = paddle.to_tensor(x)
        prices = paddle.to_tensor(y)

        # 前向计算
        predicts = model(house_features)

        # 计算损失
        loss = F.square_error_cost(predicts, label=prices)
        avg_loss = paddle.mean(loss)
        if iter_id % 20 == 0:
            print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))

        # 反向传播
        avg_loss.backward()
        # 最小化loss,更新参数
        opt.step()
        # 清除梯度
        opt.clear_grad()

paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

def load_one_example():
    # 从上边已加载的测试集中,随机选择一条作为测试数据
    idx = np.random.randint(0, test_data.shape[0])
    one_data, label = test_data[idx, :-1], test_data[idx, -1]
    # 修改该条数据shape为[1,13]
    one_data =  one_data.reshape([1,-1])

    return one_data, label

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
# 开启模型测试模式
model.eval()

# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)

# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]

print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))

Paddle框架中,模型训练模式model.train(),和测试模式model.eval(),分开出来还是比较清晰的。

3.输出结果

将训练次数改成100之后,结果如下:
在这里插入图片描述
第一个数据为预测数据,第二个数据为实际数据,可以看出准确率还是可以接受的。

以上是关于美国波士顿房价是多少?的主要内容,如果未能解决你的问题,请参考以下文章

机器学习实战二:波士顿房价预测 Boston Housing

利用PaddlePaddle预测波士顿房价

线性回归预测波士顿房价

PaddlePaddle框架学习波士顿房价预测

[ch05-00] 多变量线性回归问题

波士顿房价处理