tensorboard可视化

Posted lazycat1206

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorboard可视化相关的知识,希望对你有一定的参考价值。

 1 import tensorflow as tf
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 def add_layer(inputs, in_size, out_size,n_layer,activation_function=None):
 5     layer_name=layer%s%n_layer
 6     with tf.name_scope(layer):
 7         with tf.name_scope(weights):
 8             Weights = tf.Variable(tf.random_normal([in_size, out_size]),name=W)
 9             tf.summary.histogram(layer_name+/weights,Weights)
#tensorflow中提供了
tf.summary.histogram()方法,用来绘制图片, 第一个参数是图表的名称, 第二个参数是图表要记录的变量

10 with tf.name_scope(biases):
11 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,name=b)
12 tf.summary.histogram(layer_name+/biases,biases)
13 with tf.name_scope(Wx_plus_b):
14 Wx_plus_b = tf.matmul(inputs, Weights) + biases
15 if activation_function is None:
16 outputs = Wx_plus_b
17 else:
18 outputs = activation_function(Wx_plus_b)
19 tf.summary.histogram(layer_name+/outputs,outputs)
20 return outputs
22 x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
23 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
24 y_data=np.square(x_data)-0.5+noise 25 with tf.name_scope(inputs):
26 xs=tf.placeholder(tf.float32,[None,1],name=x_input)
27 ys=tf.placeholder(tf.float32,[None,1],name=y_input)
29 l1=add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu) #隐藏层
30 prediction=add_layer(l1,10,1,n_layer=2,activation_function=None) #输出层
31 with tf.name_scope(loss):
32 loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
33 reduction_indices=[1]))
34 tf.summary.scalar(loss,loss)
#Loss的变化图和之前设置的方法略有不同.loss是在tesnorBorad 的scalars下面的, 这是由于我们使用的是tf.summary.scalar()方法.
35 with tf.name_scope(train): 
36 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
37 init = tf.global_variables_initializer()
38 sess = tf.Session()
39 merged=tf.summary.merge_all()
#tf.summary.merge_all()方法会对我们所有的summary合并到一起. 

40 writer=tf.summary.FileWriter(logs/,sess.graph)
41 sess.run(init)
42 for i in range(1000):
43 sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
44 if i%50==0:
45 result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
46 writer.add_summary(result,i)

 

以上是关于tensorboard可视化的主要内容,如果未能解决你的问题,请参考以下文章

深度学习pytorch使用tensorboard可视化实验数据

TensorFlow篇--Tensorflow框架可视化之Tensorboard

使用 Tensorboard 实时监控训练并可视化模型架构

tensorboard-理解tensorboard IMAGE标签

Tensorflow学习教程------tensorboard网络运行和可视化

tensorflow可视化工具库tensorboard使用方法详解