ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》
Posted yibeimingyue
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》相关的知识,希望对你有一定的参考价值。
针对semantic数据集:
- 1.数据集准备:
Semantic3D dataset can be found <a href="http://www.semantic3d.net/view_dbase.php?chl=2">here</a>. Download and unzip every point cloud as ascii files and place them in a folder called `Data/Semantic3D/original_data`. You also have to download and unzip the groundthruth labels as ascii files in the same folder.
# Dict from labels to names self.label_to_names = {0: ‘unlabeled‘, 1: ‘man-made terrain‘, 2: ‘natural terrain‘, 3: ‘high vegetation‘, 4: ‘low vegetation‘, 5: ‘buildings‘, 6: ‘hard scape‘, 7: ‘scanning artefacts‘, 8: ‘cars‘}
- 2.降采样以节约空间
# Subsample to save space sub_points, sub_colors, sub_labels = grid_subsampling(points, features=colors, labels=labels, sampleDl=0.01)
- 3.降采样后的点写入文件.ply文件,储存格式是:x,y,z,r,g,b,l.
# Write the subsampled ply file write_ply(ply_file_full, (sub_points, sub_colors, sub_labels), [‘x‘, ‘y‘, ‘z‘, ‘red‘, ‘green‘, ‘blue‘, ‘class‘])
以上是关于ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》的主要内容,如果未能解决你的问题,请参考以下文章
(ICCV-2019)用于视频识别的 SlowFast 网络
CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢
CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢