ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》

Posted yibeimingyue

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》相关的知识,希望对你有一定的参考价值。

针对semantic数据集:

  • 1.数据集准备:

Semantic3D dataset can be found <a href="http://www.semantic3d.net/view_dbase.php?chl=2">here</a>. Download and unzip every point cloud as ascii files and place them in a folder called `Data/Semantic3D/original_data`. You also have to download and unzip the groundthruth labels as ascii files in the same folder.

 

        # Dict from labels to names
        self.label_to_names = {0: unlabeled,
                               1: man-made terrain,
                               2: natural terrain,
                               3: high vegetation,
                               4: low vegetation,
                               5: buildings,
                               6: hard scape,
                               7: scanning artefacts,
                               8: cars}

 

  • 2.降采样以节约空间
                # Subsample to save space
                sub_points, sub_colors, sub_labels = grid_subsampling(points,
                                                                      features=colors,
                                                                      labels=labels,
                                                                      sampleDl=0.01)
  • 3.降采样后的点写入文件.ply文件,储存格式是:x,y,z,r,g,b,l.
                # Write the subsampled ply file
                write_ply(ply_file_full, (sub_points, sub_colors, sub_labels), [x, y, z, red, green, blue, class])

 

 

 

 

 

 

 

 

 

 

以上是关于ICCV2019《KPConv: Flexible and Deformable Convolution for Point Clouds》的主要内容,如果未能解决你的问题,请参考以下文章

人脸真伪验证与识别:ICCV2019论文解析

视频动作定位的分层自关注网络:ICCV2019论文解析

面部表情视频中进行远程心率测量:ICCV2019论文解析

(ICCV-2019)用于视频识别的 SlowFast 网络

CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢

CVPR-2020 AAAI2020 CVPR-2019 NIPS-2019 ICCV-2019 IJCAI-2019 论文超级大合集下载,整理好累,拿走不谢