RPA中房产证的 OCR 识别

Posted yisaiqi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RPA中房产证的 OCR 识别相关的知识,希望对你有一定的参考价值。

  客户需求,识别一些证件内容,包括身份证、户口本、营业执照、银行卡以及房产证,前四个比较容易实现,不管是艺赛旗的 RPA 还是百度的 OCR 都有接口,直接调用即可,但是都没有房产证的 OCR 识别,只能自己使用其他 OCR 接口来进行相关操作了。
  房产证如下图所示:
  技术图片

 

 


  如果使用通用文字识别所有的文字都可以识别出来,但是顺序是乱的,所以我选择了使用通用文字识别(高精度含位置版),这样的话,我不仅可以识别到文字,还能知道文字所在的位置,然后根据文字位置进行区域划分,划分后的效果如下:
技术图片

 

  


  代码如下:
  import base64
  import copy
  import re
  import requests
  class OCR(object):
  # client_id 为官网获取的AK, client_secret 为官网获取的SK
  client_id = ""
  client_secret = ""
  def get_token(self):
  """获取 access_token"""
  host = ‘https://aip.baidubce.com/oauth/2.0/token‘
  # 请求头
  headers = {‘Content-Type‘: ‘application/json; charset=UTF-8‘}
  # 请求参数
  params = {
  "grant_type": "client_credentials",
  "client_id": self.client_id,
  "client_secret": self.client_secret
  }
  # get 请求
  response = requests.get(host, headers=headers, params=params)
  # 获取 json 内容
  content = response.json()
  # 获取 access_token
  access_token = content["access_token"]
  return access_token
  def encode_img(self, img_path):
  """对图片进行编码"""
  with open(img_path, "rb") as f:
  img_content = f.read()
  # 对图片进行 base64 编码
  img_content = base64.b64encode(img_content)
  return img_content
  def img_to_str(self, img_path):
  """对图片文字进行识别"""
  access_token = self.get_token()
  # 请求 URL
  URL = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate?access_token=" + access_token
  # post 请求头
  headers = {"Content-Type": "application/x-www-form-urlencoded"}
  # post 参数
  data = {
  "image": self.encode_img(img_path),
  "recognize_granularity": "big"
  }
  # post 请求
  response = requests.post(URL, headers=headers, data=data)
  return response.json()
  if __name__ == ‘__main__‘:
  ocr = OCR()
  img = "./imgs/fcz_01.jpg"
  str_json = ocr.img_to_str(img)
  my_str_list = str_json["words_result"]
  my_title = ["证明权利或事项", "权利人(申请人)", "义务人", "坐落", "不动产单元号", "其他", "附记"]
  column_line = 999999999
  my_word_list = []
  for data in my_str_list:
  my_list = []
  words = data["words"]
  width = data["location"]["width"]
  top = data["location"]["top"]
  left = data["location"]["left"]
  height = data["location"]["height"]
  my_list.append(words)
  my_list.append(width)
  my_list.append(top)
  my_list.append(left)
  my_list.append(height)
  my_word_list.append(my_list)
  if "不动产证明" in words:
  top_01 = top
  height_01 = height
  if "证明权利或事项" in words:
  top_02 = top
  if words in my_title:
  column_line = left + width if left + width < column_line else column_line
  row_line = (top_01 + top_02 + height) / 2
  head_list = []
  left_list = []
  right_list = []
  for data in my_word_list:
  if data[0] in my_title:
  continue
  if data[2] < row_line:
  head_list.append(data)
  elif data[3] < column_line:
  for i in my_title:
  data[0] = re.sub(i, "", data[0])
  right_list.append(data)
  else:
  right_list.append(data)
  # head 处理
  head_dict = {}
  left = 0
  for data in head_list:
  head_dict[data[3]] = data[0]
  # 排序
  head_dict = sorted(head_dict.items(), key=lambda x: x[0])
  head_str = ""
  for data in head_dict:
  head_str += data[1]
  print(head_str)
  # right 处理
  right_dict = {}
  other_list = copy.deepcopy(right_list)
  for i in range(len(my_title) - 2):
  right_dict[my_title[i]] = right_list[i][0]
  other_list.remove(right_list[i])
  right_dict[my_title[-1]] = right_list[-1][0]
  other_list.remove(right_list[-1])
  # 其他处理
  other_str = ""
  for data in other_list:
  if ":" in data[0]:
  other_str += ";"
  other_str += data[0]
  right_dict[my_title[-2]] = other_str[1:]
  print(right_dict)
  运行效果如下:
  冀(2019)**市不动产证明第00***19号
  {‘证明权利或事项‘: ‘抵押权‘, ‘权利人(申请人)‘: ‘中国**************分行‘, ‘义务人‘: ‘***‘, ‘坐落‘: ‘路南区*************号‘, ‘不动产单元号‘: ‘130202*************0118‘, ‘附记‘: ‘业务编号:20190**20‘, ‘其他‘: ‘产权证书号:冀(2019)**市不动产权第00****2号;抵押物类型:土地和房屋;抵押方式:一般抵押;担保债权数额:60.00万元;债权起止时间:2019年10月24日起2049年10月24日止‘}

以上是关于RPA中房产证的 OCR 识别的主要内容,如果未能解决你的问题,请参考以下文章

RPA训练营第四期-内网验证码识别

AI-OCR让RPA拥有一双慧眼

怎样查询房产证是否抵押

智能定位胸牌为房产经纪人管理提供解决方案

贝壳找房上传房产证和身份证别人能看到吗

师慧高校gis房产管理系统,推动高校房产精细化管理