gcd 题解
Posted sydevil
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了gcd 题解相关的知识,希望对你有一定的参考价值。
gcd
Little White learned the greatest common divisor, so she plan to solve a problem: given (x, n,)
query (sum_{a=1}^nsum_{b=1}^ngcd(x^a?1,x^b?1))Input
The first line of input is an integer T ( 1≤T≤300)
For each test case ,the single line contains two integers x and n ( 1≤x,n≤1000000)Output
For each testcase, output a line, the answer mod 1000000007
Sample Input
5
3 1
4 2
8 7
10 5
10 8Sample Output
2
24
2398375
111465
111134466
思路:
(ans=sum_{i=1}^n(x^i-1)sum_{j=1}^{lfloor frac{n}{i}
floor}phi(j))
证明:
设(a>b)
((x^a-1,x^b-1)=(x^a-x^b,x^b-1)=(x^b(x^{a-b}-1),x^b-1))
(ecause (x^b,x^b-1)=1)
( herefore (x^b(x^{a-b}-1),x^b-1)=(x^{a-b}-1,x^b-1)=(x^{a\%b-1},x^b-1)=(0,x^{(a,b)-1})=x^{(a,b)}-1)
优化:
如果用朴素,时间复杂度(O(Tn)),会(TLE)
因为(lfloor frac{n}{i} floor)只会有(2sqrt{n})个值,我们考虑整除分块和等比数列求和。
(mathfrak{Talk is cheap,show you the code.})
#pragma GCC optimize("Ofast")
#include<cstdio>
#include<algorithm>
using namespace std;
# define Type template<typename T>
# define read read1<int>()
Type inline T read1()
{
T t=0;
bool ty=0;
char k;
do k=getchar(),(k=='-')&&(ty=1);while('0'>k||k>'9');
do t=(t<<3)+(t<<1)+(k^'0'),k=getchar();while('0'<=k&&k<='9');
return ty?-t:t;
}
# define fre(k) freopen(k".in","r",stdin);freopen(k".out","w",stdout)
# define int long long
# define mod 1000000007ll
int l,r,phi[1000001],pri[1000001],s,m;
void work1(const int r=1000000)
{
phi[1]=1;
for(int i=1;i++^r;)
phi[i]=i;
for(int i=2;i<=r;++i)
{
if(phi[i]==i)
pri[++pri[0]]=i,phi[i]=i-1;
for(int j=1;j<=pri[0]&&pri[j]*i<=r;++j)
if(i%pri[j])phi[i*pri[j]]=phi[i]*(pri[j]-1);
else{phi[i*pri[j]]=phi[i]*pri[j];break;}
}
for(int i=0;i++^r;phi[i]=(phi[i]+phi[i-1])%mod);
}
int qkpow(int n,int m)
{
if(!m)return 1;
int t=qkpow(n,m>>1);
t=t*t%mod;
if(m&1)t=t*n%mod;
return t;
}
int que(int l,int r)
{
if(s==1)return r-l+1;
return qkpow(s,l)*(qkpow(s,r-l+1)-1)%mod*qkpow(s-1,mod-2)%mod;
}
void work()
{
s=read,m=read;
int ans=0,l=0,r=1;
while(l<m)
{
ans+=(que(l+1,r)-r+l)*(phi[m/r]*2-1)%mod;
ans%=mod;
l=r;
if(l==m)break;
r=m/(m/(l+1));
}
/*for(int i=0;i++^m;)
ans=(ans+(a[i]-1)*(phi[m/i]*2-1))%mod;*/
printf("%lld
",(ans+mod)%mod);
}
signed main()
{
work1();
for(int T=read;T--;work());
return 0;
}
/*
(x^a-1,x^b-1)=(x^a-1,x^b-x^a)=(x^a-1,(x^(b-a)-1)*x^a)
=(x^a-1,x^(b-a)-1)=(x^a-1,x^(b%a)-1)
*/
以上是关于gcd 题解的主要内容,如果未能解决你的问题,请参考以下文章