决策树——公式推导
Posted cuteythyme
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了决策树——公式推导相关的知识,希望对你有一定的参考价值。
决策树中涉及到了信息熵、信息增益、信息增益率、基尼系数等公式,作为相应算法(ID3、C4.5、Cart树)的衡量标准,今天就来稍微推导一下这些公式~
信息熵的最值求解
已知集合D的信息熵的定义为
[operatorname{Ent}(D)=-sum_{k=1}^{ | mathcal{Y}|} p_{k} log _{2} p_{k}]
其中,(| mathcal{Y}|)表示样本类别总数,(p_k)表示第k类样本所占的比例,且(0 leq p_k leq 1,sum_{k=1}^{n}p_k=1)。
若令(| mathcal{Y}|=n,p_k=x_k),那么信息熵(operatorname{Ent}(D))就可以看作一个(n)元实值函数,也即
[operatorname{Ent}(D)=f(x_1,...,x_n)=-sum_{k=1}^{n} x_{k} log _{2} x_{k} ]
其中,(0 leq x_k leq 1,sum_{k=1}^{n}x_k=1),下面考虑求该多元函数的最值。
求最大值:
如果不考虑约束(0 leq x_k leq 1),仅考虑(sum_{k=1}^{n}x_k=1)的话,对(f(x_1,...,x_n))求最大值等价于如下最小化问题
[egin{array}{ll}{
operatorname{min}} & {sumlimits_{k=1}^{n} x_{k} log _{2} x_{k} } \
{ ext { s.t. }} & {sumlimits_{k=1}^{n}x_k=1}
end{array}]
显然,在(0 leq x_k leq 1)时,此问题为凸优化问题,而对于凸优化问题来说,满足KKT条件的点即为最优解。由于此最小化问题仅含等式约束,那么能令其拉格朗日函数的一阶偏导数等于0的点即为满足KKT条件的点。根据拉格朗日乘子法可知,该优化问题的拉格朗日函数为
[L(x_1,...,x_n,lambda)=-sum_{k=1}^{n} x_{k} log _{2} x_{k}+lambda(sum_{k=1}^{n}x_k-1)]
其中,(lambda)为拉格朗日乘子。对(L(x_1,...,x_n,lambda))分别关于(x_1,...,x_n,lambda)求一阶偏导数,并令偏导数等于0可得
[egin{aligned}
cfrac{partial L(x_1,...,x_n,lambda)}{partial x_1}&=cfrac{partial }{partial x_1}left[-sum_{k=1}^{n} x_{k} log _{2} x_{k}+lambda(sum_{k=1}^{n}x_k-1)
ight]=0&=-log _{2} x_{1}-x_1cdot cfrac{1}{x_1ln2}+lambda=0 &=-log _{2} x_{1}-cfrac{1}{ln2}+lambda=0 &Rightarrow lambda=log _{2} x_{1}+cfrac{1}{ln2}\cfrac{partial L(x_1,...,x_n,lambda)}{partial x_2}&=cfrac{partial }{partial x_2}left[-sum_{k=1}^{n} x_{k} log _{2} x_{k}+lambda(sum_{k=1}^{n}x_k-1)
ight]=0&Rightarrow lambda=log _{2} x_{2}+cfrac{1}{ln2}\vdots\cfrac{partial L(x_1,...,x_n,lambda)}{partial x_n}&=cfrac{partial }{partial x_n}left[-sum_{k=1}^{n} x_{k} log _{2} x_{k}+lambda(sum_{k=1}^{n}x_k-1)
ight]=0&Rightarrow lambda=log _{2} x_{n}+cfrac{1}{ln2}\cfrac{partial L(x_1,...,x_n,lambda)}{partial lambda}&=cfrac{partial }{partial lambda}left[-sum_{k=1}^{n} x_{k} log _{2} x_{k}+lambda(sum_{k=1}^{n}x_k-1)
ight]=0&Rightarrow sum_{k=1}^{n}x_k=1\end{aligned}]
整理一下可得
[left{ egin{array}{lr}
lambda=log _{2} x_{1}+cfrac{1}{ln2}=log _{2} x_{2}+cfrac{1}{ln2}=...=log _{2} x_{n}+cfrac{1}{ln2} \sumlimits_{k=1}^{n}x_k=1
end{array}
ight.]
由以上两个方程可以解得
[x_1=x_2=...=x_n=cfrac{1}{n}]
又因为(x_k)还满足约束(0 leq x_k leq 1),显然(0 leqcfrac{1}{n}leq 1),所以(x_1=x_2=...=x_n=cfrac{1}{n})是满足所有约束的最优解,也即为当前最小化问题的目标函数的最小值点,同样也是(f(x_1,...,x_n))的最大值点。将(x_1=x_2=...=x_n=cfrac{1}{n})代入(f(x_1,...,x_n))中可得
[f(cfrac{1}{n},...,cfrac{1}{n})=-sum_{k=1}^{n} cfrac{1}{n} log _{2} cfrac{1}{n}=-ncdotcfrac{1}{n} log _{2} cfrac{1}{n}=log _{2} n]
所以(f(x_1,...,x_n))在满足约束(0 leq x_k leq 1,sum_{k=1}^{n}x_k=1)时的最大值为(log _{2} n)。
求最小值:
如果不考虑约束(sum_{k=1}^{n}x_k=1),仅考虑(0 leq x_k leq 1)的话,(f(x_1,...,x_n))可以看做是(n)个互不相关的一元函数的加和,也即
[f(x_1,...,x_n)=sum_{k=1}^{n} g(x_k) ]
其中,(g(x_k)=-x_{k} log _{2} x_{k},0 leq x_k leq 1)。那么当(g(x_1),g(x_2),...,g(x_n))分别取到其最小值时,(f(x_1,...,x_n))也就取到了最小值。所以接下来考虑分别求(g(x_1),g(x_2),...,g(x_n))各自的最小值,由于(g(x_1),g(x_2),...,g(x_n))的定义域和函数表达式均相同,所以只需求出(g(x_1))的最小值也就求出了(g(x_2),...,g(x_n))的最小值。下面考虑求(g(x_1))的最小值,首先对(g(x_1))关于(x_1)求一阶和二阶导数
[g^{prime}(x_1)=cfrac{d(-x_{1} log _{2} x_{1})}{d x_1}=-log _{2} x_{1}-x_1cdot cfrac{1}{x_1ln2}=-log _{2} x_{1}-cfrac{1}{ln2}]
[g^{primeprime}(x_1)=cfrac{dleft[g^{prime}(x_1)
ight)}{d x_1}=cfrac{dleft(-log _{2} x_{1}-cfrac{1}{ln2}
ight)}{d x_1}=-cfrac{1}{x_{1}ln2}]
显然,当(0 leq x_k leq 1)时(g^{primeprime}(x_1)=-cfrac{1}{x_{1}ln2})恒小于0,所以(g(x_1))是一个在其定义域范围内开头向下的凹函数,那么其最小值必然在边界取,于是分别取(x_1=0)和(x_1=1),代入(g(x_1))可得
[g(0)=-0log _{2} 0=0]
[g(1)=-1log _{2} 1=0]
所以,(g(x_1))的最小值为0,同理可得(g(x_2),...,g(x_n))的最小值也为0,那么(f(x_1,...,x_n))的最小值此时也为0。但是,此时是不考虑约束(sum_{k=1}^{n}x_k=1),仅考虑(0 leq x_k leq 1)时取到的最小值,若考虑约束(sum_{k=1}^{n}x_k=1)的话,那么(f(x_1,...,x_n))的最小值一定大于等于0。如果令某个(x_k=1),那么根据约束(sum_{k=1}^{n}x_k=1)可知(x_1=x_2=...=x_{k-1}=x_{k+1}=...=x_n=0),将其代入(f(x_1,...,x_n))可得
[f(0,0,...,0,1,0,...,0)=-0 log _{2}0-0 log _{2}0...-0 log _{2}0-1 log _{2}1-0 log _{2}0...-0 log _{2}0=0 ]
所以(x_k=1,x_1=x_2=...=x_{k-1}=x_{k+1}=...=x_n=0)一定是(f(x_1,...,x_n))在满足约束(sum_{k=1}^{n}x_k=1)和(0 leq x_k leq 1)的条件下的最小值点,其最小值为0。
综上可知,当(f(x_1,...,x_n))取到最大值时:(x_1=x_2=...=x_n=cfrac{1}{n}),此时样本集合纯度最低;当(f(x_1,...,x_n))取到最小值时:(x_k=1,x_1=x_2=...=x_{k-1}=x_{k+1}=...=x_n=0),此时样本集合纯度最高。
信息增益
[
Gain(D,a) = Ent(D) - sum_{v=1}^{V}frac{|D^v|}{|D|}Ent({D^v})
]
假定在样本D中有某个离散特征 (a) 有 (V) 个可能的取值 ((a^1,a^2,...,a^V)),若使用特征 (a) 来对样本集 (D) 进行划分,则会产生 (V) 个分支结点,其中第 (v) 个分支结点包含了 (D) 中所有在特征 (a) 上取值为 (a^v) 的样本,样本记为 (D^v),由于根据离散特征a的每个值划分的 (V) 个分支结点下的样本数量不一致,对于这 (V) 个分支结点赋予权重 (frac{|D^v|}{|D|}),即样本数越多的分支结点的影响越大,特征 (a) 对样本集 (D) 进行划分所获得的“信息增益”为
[
Gain(D,a) = Ent(D) - sum_{v=1}^{V}frac{|D^v|}{|D|}Ent({D^v})
]
信息增益越大,表示使用特征a来对样本集进行划分所获得的纯度提升越大。
缺点:由于在计算信息增益中倾向于特征值越多的特征进行优先划分,这样假设某个特征值的离散值个数与样本集 (D) 个数相同(假设为样本编号),虽然用样本编号对样本进行划分,样本纯度提升最高,但是并不具有泛化能力。
信息增益率
[
Gain-ratio(D,a)=frac{Gain(D,a)}{IV(a)}
]
基于信息增益的缺点,(C4.5) 算法不直接使用信息增益,而是使用一种叫增益率的方法来选择最优特征进行划分,对于样本集 (D) 中的离散特征 (a) ,增益率为
[
Gain-ratio(D,a)=frac{Gain(D,a)}{IV(a)}
]
其中,
[
IV(a)=-sum_{v=1}^{V}frac{|D^v|}{|D|}log_2frac{|D^v|}{|D|}
]
IV(a) 是特征 a 的熵。
增益率对特征值较少的特征有一定偏好,因此 (C4.5) 算法选择特征的方法是先从候选特征中选出信息增益高于平均水平的特征,再从这些特征中选择增益率最高的。
基尼值
[
egin{aligned}
Gini(D) &=sum_{k=1}^{|y|}sum_{k
eq{k'}}{p_k}{p_{k'}}&=1-sum_{k=1}^{|y|}p_k^2
end{aligned}
]
[推导]:假定当前样本集合 (D) 中第 (k) 类样本所占的比例为 (p_k(k =1,2,...,|y|)),则 (D) 的基尼值为
[
egin{aligned}
Gini(p) &=sum_{k=1}^{|y|}sum_{k
eq{k'}}{p_k}{p_{k'}}&=sum_{k=1}^{|y|}{p_k}{(1-p_k)} &=1-sum_{k=1}^{|y|}p_k^2
end{aligned}
]
以上是关于决策树——公式推导的主要内容,如果未能解决你的问题,请参考以下文章
机器学习集成学习(Boosting)——梯度提升树(GBDT)算法(理论+图解+公式推导)